Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T21:04:16.947Z Has data issue: false hasContentIssue false

Synthesis of Single-Crystalline Silicon Nitride (α-Si3N4) Nanowires with Controlled Diameters by Nitriding Cryomilled Nanocrystalline Silicon Powder

Published online by Cambridge University Press:  01 February 2011

Fei Chen*
Affiliation:
Key Laboratory of Advanced Technology for Specially Functional Materials, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
Zhihao Wang
Affiliation:
State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
Qiang Shen
Affiliation:
State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
Zhixiong Huang
Affiliation:
Key Laboratory of Advanced Technology for Specially Functional Materials, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
Lianmeng Zhang
Affiliation:
Key Laboratory of Advanced Technology for Specially Functional Materials, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
*
acorresponding author, chenfei027@gmail.com
Get access

Abstract

In the present work, silicon nitride nanowires (SNNWs) have been synthesized via nitriding cryomilled nanocrystalline silicon powder. The silicon powder exhibits a fine polycrystalline structure after the cryomilling process, with an average grain size of 25 to 125 nm at various cryomilling times. The SNNWs that form after the nitridation of the cryomilled silicon powder exhibit single crystal structure and are 20 to 100 nm in diameter and ∼10 µm in length. The diameter of the nanowires is in agreement with the grain size of the cryomilled Si powder. Microstructural characterization reveals that the as-synthesized nanowires have a hexagonal structure and their primary growth direction is along the [0001] direction. The formation of the Si–N–Si bond during the cryomilling process, as investigated theoretically with density functional theory, promotes the subsequent synthesis of the α-Si3N4 nanowires. The mechanism for nanowire formation appears to be a vapor-solid (VS) reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, I. W. and Rosenflanz, A., Nature (London). 389,701 (1997).Google Scholar
2. Riley, F. L., J. Am. Ceram. Soc. 83, 245 (2000).Google Scholar
3. Zhang, L., Jin, H., Yang, W., Xie, Z., Miao, H., An, L., Appl. Phys. Lett. 86, 061908 (2005).Google Scholar
4. Wong, E. W., Sheehan, P. E. and Lieber, C. M., Science, 277, 1971 (1997).Google Scholar
5. Munakata, F., Matsuo, K., Furuya, K., Akimune, Y., Ye, J. and Ishikawa, I., Appl. Phys. Lett. 74, 3498 (1999).Google Scholar
6. Wang, M. J. and Wada, H., J. Mater. Sci. 25, 2690 (1990).Google Scholar
7. Ramesh, P. D. and Rao, K. J., J. Mater. Res. 9, 2330 (1994).Google Scholar
8. Rodriguez, M. A., Makhonin, N. S. and Escrina, J. A., Adv. Mater. 7,745 (1995).Google Scholar
9. Gao, Y. G., Ge, C. C., Zhou, Z. J. and Li, J. T., J. Mater. Res. 14,876 (1999).Google Scholar
10. Han, W., Fan, S., Li, Q., Gu, B., Zhang, X. and Yu., D. Appl. Phys. Lett. 71, 2271 (1997).Google Scholar
11. Han, W., Fan, S., Li, Q. and Hu, Y., Science, 277, 1287 (1997).Google Scholar
12. Cao, Y. G., Chen, H., Li, J. T., Ge, C. C., Tang, S. Y., Tang, J. X. and Chen., X. J. Cryst. Growth.234, 9 (2002).Google Scholar
13. Kim, H. Y., Park, J. and Yang, H., Chem. Phys. Lett. 372, 269 (2003).Google Scholar
14. Ran, G. Z., You, L. P., Dai, L., Liu, Y. L., Lv, Y., Chen, X. S. and Qin, G. G., Chem. Phys. Lett. 384, 94 (2004).Google Scholar
15. Yin, L. W., Bando, Y., Zhu, Y. C. and Li, Y. B., Appl. Phys. Lett. 83, 3584 (2003).Google Scholar
16. Motojima, S., Yamana, T., Araki, T., and Iwanaga, H., J. Electrochem. Soc.142, 3141 (1995).Google Scholar
17. Kijima, K., Setaka, N. and Tanaka, H., J. Cryst. Growth. 24-15,183 (1971).Google Scholar
18. Inomata, Y. and Yamane, T., J. Cryst. Growth, 21, 317 (1971).Google Scholar
19. Jennings, H. M., J. Mater. Sci. 18,951 (1983).Google Scholar
20. Farjas, J., Pinyol, A., Roura, P., Bertran, E., Appl. Phys. Lett. 87,192114 (2005).Google Scholar
21. Zhou, F., Lee, J., Dallek, S., Lavernia, E. J., J. Mater. Res. 16, 3451 (2001).Google Scholar
22. Witkin, D. B., Lavernia, E. J., Proc. Mater. Sci. 51, 1 (2006).Google Scholar
23. Ahn, B., Newbery, A. P., Lavernia, E. J., Nutt, S. R., Mater. Sci. Eng. A 463, 61 (2007).Google Scholar
24. Chung, K. H., Lavernia, E. J., Mat. Res. Soc. Symp. Proc. 791, Q 3.3.1 (2004).Google Scholar
25. Han, B. Q., Ye, J., Tang, F., Schoenung, J., Lavernia, E. J., J. Mater. Sci., 42, 1660 (2007).Google Scholar
26. Thornton, J. J., Han, B. Q., Lavernia, E. J., Metall. Mater. Trans. A 38, 1543 (2007).Google Scholar
27. Zhang, Y., Wang, N., He, R., Liu, J., Zhang, X. and Zhu, J., J. Cryst. Growth. 233, 803 (2001).Google Scholar
28. Wanger, R. S., Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
29. Wang, Z. L., Adv. Mater. 15, 432 (2003).Google Scholar
30. Schmidt, V. and Gosele, U., Science. 316, 698 (2007).Google Scholar
31. Delley, B. J., J. Chem. Phys. 92, 508 (1990).Google Scholar
32. Delley, B. J., J. Chem. Phys. 113, 7756 (2000).Google Scholar
33. Hammer, B., Hansen, L. B., Norskov, J. K., Phys. Rev. B 59, 7413 (1999).Google Scholar