Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-11T12:14:31.226Z Has data issue: false hasContentIssue false

Synthesis of (Si2Ge)Cx and Related Ge1-xCx Phases in The Si-Ge-C System

Published online by Cambridge University Press:  16 February 2011

David Nesting
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
Jeff McMurran
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
John Kouvetakis
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
Get access

Abstract

The synthesis and characterization of binary and ternary semiconductor alloys and ordered phases based on C, Si and Ge are described. Thin films of these materials were synthesized using molecular precursors such as (SiH3)4C and (GeH3)4C in which the Si4C and Ge4C tetrahedra are incorporated as building blocks during deposition. Materials systems prepared include a new ordered structure (Si2Ge)1-xCx (x=5%), and Ge1-xCx hybrids of Ge and C-diamond. The (Si2Ge)Cx phase has a P 3ml structure formed by ordering of the [111] lattice planes in a Ge-Si-Si sequence. The Ge-C materials display unusual morphologies ranging from coherent heterostructures to carbide nanorods and quantum dots which are formed by CVD reactions utilizing a new family of (GeH3)4-xCHx (x=0-2) precursors. The morphology and microstructure in the samples is dependent upon the molecular design of the precursor and the carbon concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abstreiter, G., Physica Scripta T49, 42 (1993).Google Scholar
2. Abstreiter, G., Eberl, K., Friess, E., Wegscheider, W., and Zachai, R., J. Cryst. Growth 95, 431 (1989).Google Scholar
3. Kouvetakis, J., Nesting, D., and Smith, D. J., Chem. Mater. 10, 2935 (1998).Google Scholar
4. Tsaur, B.-Y., Chen, C. K., and Marino, S. A., Optical Engineering 33, 72 (1994).Google Scholar
5. Chang, C. L., Amour, A. S., and Sturm, J. C., Appl. Phys. Lett. 70, 1557 (1997).Google Scholar
6. Presting, H., Mat. Res. Soc. Symp. Proc. 379, 417 (1995).Google Scholar
7. Kouvetakis, J., Nesting, D., O'Keeffe, M., and Smith, D. J., Chem. Mater. 10, 1396 (1998).Google Scholar
8. Kouvetakis, J., Todd, M., Chandrasekhar, D., and Smith, D. J., Appl. Phys. Lett. 65, 2960 (1994).Google Scholar
9. Berding, M. A., Sher, A., and van Schilfgaarde, M., Phys. Rev. B. 56, 3885 (1997).Google Scholar
10. Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar
11. Lockwood, D. J., Rajan, K., Fenton, E. W., Baribeau, J.-M., and Denhoff, M. W., Solid State Comm. 61, 465 (1987).Google Scholar
12. Müller, E., Nissen, H.-U., Ospelt, M., and von Känel, H., Phys. Rev. Lett. 63, 1819 (1989).Google Scholar
13. Tsang, J. C., Kesan, V. P., Freeouf, J. L., LeGoues, F. K., and Iyer, S. S., Phys. Rev. B 46, 6907 (1992).Google Scholar
14. Kesan, V. P., LeGoues, F. K., and Iyer, S. S., Phys. Rev. B 46, 1576 (1992).Google Scholar
15. LeGoues, F. K., Kesan, V. P., and Iyer, S. S., Phys. Rev. Lett. 64, 40 (1990).Google Scholar
16. Laursen, T., Chandrasekhar, D., Smith, D. J., Mayer, J. W., Hoffman, J., Westhoff, R., and Robinson, M. D., Appl. Phys. Lett. 71, 1634 (1997).Google Scholar
17. Iyer, S. S., Eberl, K., Powell, A. R., and Ek, B. A., Microelectronic Engineering 19, 351 (1992).Google Scholar
18. Todd, M., Matsunaga, P., Kouvetakis, J., Chandrasekhar, D., and Smith, D. J., Appl. Phys. Lett. 67, 1247 (1995).Google Scholar
19. Hager, R., Steigelman, O., Muller, G., Schmidbaur, H., Robertson, H. H., and Rankin, D. W., Angew. Chem. Int. Ed. 29, 201 (1990).Google Scholar
20. Matsunaga, P. T., Kouvetakis, J., and Groy, T. L., Inorg. Chem. 34, 5103 (1995).Google Scholar
21. Nesting, D. C., Kouvetakis, J., and S. D. J., Appl. Phys. Lett. In Press (1998).Google Scholar