Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T00:52:20.261Z Has data issue: false hasContentIssue false

Synthesis of Periodic Mesoporous Silica Thin Films

Published online by Cambridge University Press:  10 February 2011

M. T. Anderson
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
J. E. Martin
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
J. G. Odinek
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
P. Newcomer
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

We have synthesized periodic mesoporous silica thin films (PMSTF) from homogeneous solutions. To synthesize the films a thin layer of a pH = 7 micellar coating solution that contains TMOS is dip- or spin-coated onto silicon wafers, borosilicate glass, or quartz substrates. Ammonia gas is diffused into the solution and causes rapid hydrolysis and condensation of the TMOS and the formation of periodic mesoporous thin films within ∼10 seconds. The combination of homogeneous solutions and rapid product formation maximizes the concentration of desired product and provides a controlled, predictable microstructure. The films have been made continuous and crack-free by optimizing initial silica concentration and film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T-W., Olson, K. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L., J. Am. Chem. Soc. 114, pp. 1083410843 (1992).Google Scholar
2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., Nature 359, pp. 710712 (1992).Google Scholar
3. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F., and Stucky, G. D., Nature 24, pp. 317321 (1994).Google Scholar
4. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P., Firouzi, A., Chmelka, B. F., Schuth, F., and Stucky, G. D., Chem. Mater. 6, pp. 11761191 (1994).Google Scholar
5. Chen, C.-Y., Li, H-X., and Davis, M. E. Micropor. Mater. 2, pp. 1726 (1993).Google Scholar
6. Ogawa, M., J. Am. Chem. Soc. 116, pp. 79417942 (1994).Google Scholar
7. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., and Ozin, G. A., Nature 379, pp.703705 (1996).Google Scholar
8. Bontha, J. R., Kim, A. Y., and Liu, J., Mater. Res. Soc. Symp. Proc., this volume.Google Scholar
9. Olson, D. H., Stucky, G. D., Vartuli, J. C., U.S. Patent No. 5 364 797 (1994).Google Scholar
10. Anderson, M. T., Martin, J. E., Odinek, J. G., Newcomer, P. P., and Wilcoxon, J. P., submitted to Chemistry of Materials.Google Scholar
11. Ricco, A. J., Fry, G. C., and Martin, S. J., Langmuir 5, pp. 273276 (1989).Google Scholar
12. Anderson, M. T., Martin, J. E., Odinek, J. G., Newcomer, P. P., and Wilcoxon, J. P., Mater. Res. Symp. Proc., this volume.Google Scholar