Skip to main content Accessibility help
×
Home

Synthesis of Metastable Diamond

  • Thomas R. Anthony (a1)

Abstract

Diamond can be grown as an equilibrium phase from a liquid metal solution containing carbon at high pressures and high temperatures. Diamond can also be grown as a metastable phase at subatmospheric pressures and moderate temperatures from hydrocarbon gases in the presence of atomic hydrogen. Atomic hydrogen serves several critical roles in CVD diamond growth, namely: 1) stabilization of the diamond surface, 2) reduction of the size of the critical nucleus, 3) “dissolution” of carbon in the gas, 4) production of carbon solubility minimum, 5) generation of condensable carbon radicals in the gas, 6) abstraction of hydrogen from hydrocarbons attached to surface, 7) production of vacant surface sites, 8) etching of graphite, 9) suppression of polycycic aromatic hydrocarbons. A search for substitutes for atomic hydrogen have been unsuccessful to date but several new processes that do not use atomic hydrogen are currently under study.

Copyright

References

Hide All
[1] Bent, Henry A., “Second Law of Thermodynamics”, Oxford University Press, New York (1965).
[2] Davies, Gordon, “Diamond”, Adam Hilger Ltd, Bristol (1984).
[3] Bundy, F.P., Hall, H.T, Strong, H.M., and Wentorf, R.H. Jr, Nature, 176, 5154 (1955)
[4] Devries, R.C., Ann Rev Mater Sci, 17, 161187 (1987).
[5] Eversole, W.G., U.S. Patent No. 3030188, Apr 17, 1962.
[6] Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys, 39, 2915 (1968).
[7] Poferi, D.J., Gardner, N.C. and Angus, J.C., J. Appl. Phys, 44, 1428 (1973).
[8] Spear, K.E., J. Am. Ceramic Soc, 72, 171 (1989).
[9] Spitsyn, B.V., Bouilov, L.L and Deryagin, B.V., J. Cryst. Growth, 52, 219 (1981).
[10] Pate, B.B., Surf. Sci., 165, 83 (1986).
[11] Angus, J.C. and Hayman, C.C., Science, 241, 913 (1988).
[12] Bachman, P.K. and Messier, R., Chem & Eng News, 67, 24 (1989).
[13] Joffreau, P.O., Haubner, R. and Lux, B., J. Ref Hard Metals, 7, 186 (1988).
[14] Lersmacher, B., Lydtin, H., Knippenberg, W.F. and Moore, A.W., Carbon, 5, 205 (1967).
[15] Van Den Hoek, W.J. and Klessens, W., Carbon, 13, 429 (1975).
[16] Chen, Ian, J. Appl. Phys, 64, 3742 (1988).
[17] Harris, S.J., Weiner, A.M. and Perry, T.A., Appl. Phys. Letters, 53, 1605 (1988).
[18] Frenklach, M. and Spear, K.E., J. Mater. Res., 3, 133 (1988).
[19] Hsu, W.L, 34th Nat Symp AVS, TF-WeA1, (November 1987).
[20] Deryagin, B.V. and Fedoseev, D.V., “Growth of Diamond and Graphite from the Vapor Phase”, Izd Nauka., Moscow, USSR, 1977.
[21] Frenklach, M., J. Appl. Phys, 65, 5142 (1989).
[22] Rosner, D.E. and Strakey, J.P., J. Phys. Chem, 77, 690 (1973).
[23] Rosner, D.E. and Allendorf, H.D., J. Phys. Chem, 75, 308 (1971).
[24] Kawato, T. and Kondo, K., J. Appl. Phys., 26, 1429 (1987).
[25] Chang, C.P., Flamm, D. L, Ibbotson, D.E. and Mucha, J., J. Appl. Phys, 63, 1744 (1988).
[26] Saito, Y., Sato, K, Tanaka, H., Fujita, K. and Matsuda, S., J. Mater. Sci, 23, 842 (1986).
[27] Hirose, Y. and Terasawa, Y., Japan J. Appl. Phys, 25, L519 (1986).
[28] Patel, A.R. and Cherian, K.A., Indian Journal of Pure & Appl Phys, 19, 803 (1981).
[29] Brinkman, J.A., Meechan, C.J. and Dieckamp, H.M., US Patent #3,142,539 (1964).
[30] Brinkman, J.A., Meechan, C.J. and Dieckamp, H.M., US Patent #3,175,885 (1965).
[31] Rudder, R.A., Posthill, J.B., Hudson, G.C., Mantini, M.J. and Markunas, R.J., 1989 Diamond Technology Initiative Symposium, Paper W16, (July 11-13, 1989).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed