Skip to main content Accessibility help

Synthesis of graphene nanoribbons from amyloid fibrils by solid-phase graphitization using liquid gallium catalyst

  • Katsuhisa Murakami (a1) (a2), Tianchen Dong (a1) (a2), Yuya Kajiwara (a1) (a2), Takaki Hiyama (a1), Ryuichi Ueki (a1) (a2), Gai Ohashi (a1), Kentaro Shiraki (a1), Yoichi Yamada (a1) and Jun-ichi Fujita (a1) (a2)...


Amyloid fibrils, which are linear proteins with widths of less than 10 nm and lengths of more than 1 μm, were used as an amorphous carbon template for graphene nanoribbons (GNRs) synthesized by solid-phase graphitization using liquid Ga as the catalyst. The crystal quality of the GNRs improved with increasing synthesis temperature. However, the shape of the GNRs synthesized at temperatures higher than 900 °C became broader, losing the original amyloid shape, whereas the GNRs synthesized at 900 °C seemed to maintain the original amyloid shape in the SEM observation. The conducting paths of GNRs synthesized at 900 °C were found to be slightly diffused outside the topography of the GNRs in the conductive atomic force microscopy map. In addition, some of the sapphire terrace edges of the substrate showed conductivity, which indicates that the growth mechanism of graphene on a sapphire substrate might be a step-flow growth mode.



Hide All
1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).
2. Nakada, K., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B 54, 17954 (1996).
3. Wakabayashi, K., Fujita, M., Ajiki, H. and Sigrist, M., Phys. Rev. B 59, 8271 (1999).
4. Han, M. Y., Özyilmaz, B., Zhang, Y. and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).
5. Li, X., Wang, X.. Zhang, L., Lee, S. and Dai, H., Science 319, 1229 (2008).
6. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seisonen, A. P., Saleh, M., Feng, X., Müllen, K. and Fasel, R., Nature 466, 470 (2010).
7. Fujita, J., Ueki, R. and Miyazawa, Y., J. Vac. Sci. Technol. B 27, 3063 (2009).
8. Fujita, J., Miyazawa, Y., Ueki, R., Sasaki, M. and Saito, T., Jpn. J. Appl. Phys. 49,06GC01 (2010).
9. Ueki, R., Nishijima, T., Hikata, T., Ookubo, S., Utsunomiya, R., Matsuba, T. and Fujita, J., Jpn. J. Appl. Phys. 51, 06FD28 (2012).
10. Fujita, J., Miyazawa, Y. and Ueki, R., J. Vac. Sci. Technol. B 28, C6D1 (2010).
11. Fujita, J., Ueki, R., Nishijima, T. and Miyazawa, Y., Microelectron. Eng. 88, 2524 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed