Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T21:14:56.460Z Has data issue: false hasContentIssue false

Synthesis of GaS Nanoparticles from a Single-Source Precursor [Ga(S2CNEt2)3/

Published online by Cambridge University Press:  15 February 2011

Mohammad Azad Malik
Affiliation:
School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK, e-mail: paul.obrien@man.ac.uk, azad.malik@man.ac.uk
Paul O'Brien
Affiliation:
School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK, e-mail: paul.obrien@man.ac.uk, azad.malik@man.ac.uk
Sibusiso N. Mlondo
Affiliation:
Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa, 3886, Kwazulu-Natal Province, South Africa.
Neerish Revaprasadu
Affiliation:
Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa, 3886, Kwazulu-Natal Province, South Africa.
Get access

Abstract

GaS nanoparticles have been synthesized by thermolysis of [Ga(S2CNEt2)3] in 4- ethylpyridine. Their absorption spectrum give a band edge at 440 nm (band gap,3.0 eV). XRD pattern showed abroad peaks corresponding to cubic phase of GaS. TEM images confirmed the crystalline nature of particles with narrow size distribution (5.4 nm ± 0.7 dia). To our knowledge this the first time that GaS nanoparticles have been prepared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sze, S. M., Semiconductor Deuices, Physics and Technology; John Wiley and Sons: Chichester, (1985).Google Scholar
[2] (a) MacInnes, A. N.; Power, M. B.; Barron, A. R.; Jenkins, P. P.; Hepp, A. F. Appl. Phys. Lett., 62, 711 (1993). (b) M. Tabib-Azar, S. Kang, A. N MacInnes, M. B. Power, A. R.Barron, P. P. Jenkins, A. F. Hepp, Appl. Phys. Lett., 63, 625 (1993)Google Scholar
[3] Cowley, A. H., Jones, R. A., Angew. Chem., Int. Ed. Engl. 28, 1208 (1989)Google Scholar
[4] Ai-if, A. M., Benac, B. L., Cowley, A. H., Jones, R. A., Kidd, K. B., Nunn, C. M., J. Chem. Soc., 12, 553 (1988)Google Scholar
[5] Aitchison, K. A., Julius, J. D. Backer-Dirks, Bradley, D. C., Faktor, M. M., Frigo, D. M., Hursthouse, M. B., B. Hussain, Short, R. L., J. Organomet. Chem., 366, 11 (1989)Google Scholar
[6] Malik, M. A., O'Brien, P., Mater. Chem., 3, 999 (1991)Google Scholar
[7] Malik, M. A., O'Brien, P., Hursthouse, M. B., Motevalli, M., Organometallics, 10, 730 (1991)Google Scholar
[8] Malik, M. A., O'Brien, P., Hursthouse, M. B., Motevalli, M.,. Polyhedron, 11, 45 (1992)Google Scholar
[9] Malik, M. A., O'Brien, P., Hursthouse, M. B., Motevalli, M. M. J., Mater. Chem. 2, 949 (1992).Google Scholar
[10] Malik, M. A., O'Brien, P., Hursthouse, M. B., Motevalli, M., Organometallics, 11, 3136 (1992)Google Scholar
[11] Gvsline, H. J, Wernbera, A. A., Blanton, T. N, Chem. Mater., 4, 7900 (1992)Google Scholar
[12] MacInnes, A. N., Power, M. B, Barron, A. R., Chem. Mater., 4, 11 (1992)Google Scholar
[13] Nomura, R., Konishi, K., Matsuda, H., Thin Solid Films 198, 339 (1991)Google Scholar
[14] Nomura, R., Fujii, S., Kanaya, K.,. Matsuda, H., Polyhedron, 9, 361 (1990)Google Scholar
[15] Kanatzidis, M. G., Dihingra, S., Inorg. Chem., 28, 2024 (1989)Google Scholar
[16] Kim, Wha-Tek, Kim, Chang-Dae, J. Appl. Phys., 60, 2631 (1986)Google Scholar
[17] Nomura, R., Moritake, A., Kanaya, K.,. Matsuda, H., Thin Solid Films, 167, L27–L29 (1988)Google Scholar
[18] MacInnes, A. N., Cleaver, W. M., Barron, A. R., Power, M. B., Hepp, A. F., Adu. Mater. Opt. Electron., 1, 229 (1992)Google Scholar
[19] Nomura, R., Konishi, K., Matsuda, H., Chem. Lett. 1849 1988)Google Scholar
[20] Nomura, R., Inazawa, H., Konishi, K., Matsuda, H., Polyhedro, 8, 763 (1989)Google Scholar
[21] Revaprasadu, N., Malik, M.A., Carstens, J. and O'Brien, P., J. Mat. Chem., 9, 2885 (1999)Google Scholar
[22] Afzaal, M., O'Brien, P., Crouch, D., Mater. Sci. Engineering, B116, 391 (2005)Google Scholar
[23] Afzaal, M., Crouch, D., O'Brien, P., , Jin-Ho-Park, J. Mater. Sci. Materials in. Electronics, 14, 555 (2003)Google Scholar
[24] , Henglein, Chem. Rev., 89, 1861 (1989).Google Scholar
[25] Steigerwald, M. L., Brus, L. E., Acc. Chem. Rev., 23, 183 (1990)Google Scholar
[26] Wang, N.,. , Herron, J. Phys. Chem., 95, 525 (1991)Google Scholar
[27] , Weller, Adv. Mater., 5, 88 (1993).Google Scholar
[28] Brus, L.E., Appl. Phys.A, 53, 495 (1991).Google Scholar
[29] Brus, L.E., J. Phys. Chem., 98, 3577 (1994)Google Scholar
[30] Dimitrijevic, N. M., Kamat, P. V., Langmuir, 3, 1004 (1987)Google Scholar
[31] Kamat, P. V., Dimitrijevic, N. M., Fessenden, R. W., J. Phys. Chem., 92, 2324 (1988)Google Scholar
[32] Stoll, S. L., Gillan, E. G., Barron, A. R., Chem. Vap. Deposition, 2, 182 (1996)Google Scholar
[33] Kuhn, A., Phys. Rev. B Solid State, 25, 4081 (1982).Google Scholar