Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T08:49:23.806Z Has data issue: false hasContentIssue false

Synthesis of Continuous SmSi2 Layers on Si by Samarium Ion Implantation Using A Metal Vapor Vacuum Arc Ion Source

Published online by Cambridge University Press:  17 March 2011

X.Q. Cheng
Affiliation:
Department of Materials Science and EngineeringTsinghua University, Beijing 100084, CHINA
H.N. Zhu
Affiliation:
Department of Materials Science and EngineeringTsinghua University, Beijing 100084, CHINA
B.X. Liu
Affiliation:
Department of Materials Science and EngineeringTsinghua University, Beijing 100084, CHINA
Get access

Abstract

Samarium ion implantation was conducted to synthesize Sm-disilicide films on silicon wafers, using a metal vapor vacuum arc ion source and the continuous SmSi2 films were directly obtained with neither external heating during implantation nor post-annealing. Diffraction and surface morphology analysis confirmed the formed Sm-disilicilde films were of a fine crystalline structure under appropriate experimental conditions. Besides, the formation mechanism of the SmSi2phase is also discussed in terms of the temperature rise caused by ion beam heating and the effect of ion dose on the properties of the SmSi2films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Knapp, J.A., Picraux, S.T., Appl. Phys. Lett. 48, 466 (1986).Google Scholar
2.Siegal, M.P., Kaatz, F.H., Graham, W.R., Santiago, J.J., d'Spiegel, J.V., Appl. Surf. Sci. 38, 1629 (1989).Google Scholar
3.Duboz, J.Y., Badoz, P.A., d'Avitaya, F.A., Appl. Phys. Lett. 55, 84 (1989).Google Scholar
4.Baglin, J.E.E., d'Heurle, F.M. and Petersson, C.S., Appl. Phys. Lett. 36, 594 (1980).Google Scholar
5.Thompson, R.D., Tsaur, B.Y. and Tu, K.T., Appl. Phys. Lett. 38, 535 (1981).Google Scholar
6.Baglin, J.E.E., d'Heurle, F.M. and Petersson, C.S., J. Appl. Phys. 52, 2841 (1981).Google Scholar
7.Lau, S.S., Pai, C.S., Wu, C.S., Kuech, T.F. and Liu, B.X., Appl. Phys. Lett. 41, 1 (1982).Google Scholar
8.White, A.E., Shprt, K.T., Dynes, R.C., Garno, J.P. and Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987)Google Scholar
9.Wu, M.F., Vantomme, A., Hogg, S., Pattyn, H. and Langouche, G., Appl. Phys. Lett. 72, 2412 (1998).Google Scholar
10.Brown, I.G., Gavin, J.E., and MacGill, R.A., Appl. Phys. Lett. 47, 1358 (1985).Google Scholar
11.Zhu, D.H., Tao, K., Pan, F. and Liu, B.X., Appl. Phys. Lett. 62, 2356 (1993).Google Scholar
12.Liu, B.X., Zhu, D.H., Lu, H.B., Pan, F. and Tao, K., J. Appl. Phys. 75, 3847 (1994).Google Scholar
13.Zhu, D.H., Chen, Y.G. and Liu, B.X., Nucl. Instr. and Meth. B101, 394 (1995).Google Scholar
14.Gao, K.Y., Liu, B.X., Nucl. Instr. and Meth. B132, 68 (1997).Google Scholar
15.Gao, K.Y., Zhu, H.N., Liu, B.X., Nucl. Instr. and Meth. B140, 126 (1998).Google Scholar