Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T05:18:24.501Z Has data issue: false hasContentIssue false

Synthesis and Thermal Stability of HfO2 Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Girija Shankar Chaubey
Affiliation:
gchaubey@uno.edu
Yuan Yao
Affiliation:
yyao1@uno.edu, University of New Orleans, Advanced Materials Research Institute and Department of Chemistry, New Orleans, Louisiana, United States
Julien Pierre Amelie Makongo Mangan
Affiliation:
jmakongo@uno.edu
Pranati Sahoo
Affiliation:
psahoo@uno.edusahoo.pranati@gmail.com, University of New Orleans, Advanced Materials Research Institute and Department of Chemistry, New Orleans, Louisiana, United States
Pierre F. P. Poudeu
Affiliation:
ppoudeup@uno.edu, University of New Orleans, Chemistry, 2000 Lakeshore Dr, SC2005, New Orleans, Louisiana, 70148, United States, (504)2801057, (504)2803185
John Wiley
Affiliation:
jwiley@uno.edu, University of New Orleans, Department of Chemistry and the Advanced Materials Research Institute, 2000 Lakeshore Dr., New Orleans, Louisiana, 70148, United States
Get access

Abstract

A simple method is reported for the synthesis of monodispersed HfO2 nanoparticles by the ammonia catalyzed hydrolysis and condensation of hafnium (IV) tert-butoxide in the presence of surfactants at room temperature. Transmission electron microscopy shows faceted nanoparticles with an average diameter of 3-4 nm. As-synthesized nanoparticles are amorphous in nature and crystallize upon moderate heat treatment. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and good thermal stability. Specific surface area was about 239 m2/g on as-prepared nanoparticle samples while those annealed at 500 °C have specific surface area of 221 m2/g indicating that there was no significant increase in particle size. This result was further confirmed by TEM images of nanoparticles annealed at 300 °C and 500 °C. X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilk, G. D. Wallace, R. M. Anthony, J. M. J. Appl. Phy. 89, 5243 (2001).Google Scholar
2 Rinkio, M. Johansson, A. Paraoanu, G. S. Torma, P. Nano Lett. 9, 643 (2009).Google Scholar
3 Magunov, I. R. Magunov, R. L. Kornitskiy, G. P. Funct. Mater. 8, 563 (2001); R. Chow, S. Falabella, G. E. Loomis, F., Rainer, C. J. Stolz, M. R., Kozlowski Appl. Opt. 32, 5567 (1993); A. J. Waldorf, J. A., Dobrowolski, B. T., Sullivan, L. M., Plante Appl. Opt. 32, 5583 (1993).Google Scholar
4 Yang, X. Jentoft, F. C. Jentoft, R. E. Girgsdies, F. Ressler, T. Catal. Lett. 81, 25 (2002); S. De. Rossi, G., Ferraris, M., Valigi, D., Gazzoli Appl. Catal. A-Gen. 231, 173 (2002).Google Scholar
5 Al-Kuhaili, M. F., Durrani, S. M. A. Khawaja, E. E. J. Phys. D: Appl. Phys. 37, 1254 (2004); H. Grüger, C. Kunath, E., Kurth, S., Sorge, W., Pufe Mater. Res. Soc. Symp. Proc. 869, D2.1.1 (2005).Google Scholar
6 Wang, C. Zinkevichw, M. Aldinger, F. J. Am. Ceram. Soc 89, 3751 (2006); J., Wang H. P., Li, R., Stevens J. Mater. Sci. 27, 1992 (1992>); C. H.,Lu, J. M.,Raitano, S., Khalid, L. Zhang, S. W., Chan J. Appl. Phys. 103, 124303 (2008); F., Cardarelli Materials Handbook: A Concise Desktop Reference 2nd edn. (Springer-Verlag, New York, 2008).);+C.+H.,Lu,+J.+M.,Raitano,+S.,+Khalid,+L.+Zhang,+S.+W.,+Chan+J.+Appl.+Phys.+103,+124303+(2008);+F.,+Cardarelli+Materials+Handbook:+A+Concise+Desktop+Reference+2nd+edn.+(Springer-Verlag,+New+York,+2008).>Google Scholar
7 Garvie, R. C. J. Phys.Chem. 69, 1238 (1965); R. C., Garvie J. Phys.Chem. 82, 218 (1978).Google Scholar
8 Huang, X.Y. Xu, Z. Chen, L. D. Solid State Commun. 130, 181 (2004).Google Scholar
9 Pinna, N. Garnweitner, G. Antonietti, M. Niederberger, M. Adv. Mater. 16, 2196 (2004).Google Scholar
10 Pucci, A. Clavel, G. M-Willinger, G. Zitoun, D. Pinna, N. J. Phys. Chem. C 113, 12048 (2009).Google Scholar
11 Stefanic, G. Music, S. Molcanov, K. J. Alloys Compd. 387, 300 (2005).Google Scholar
12 Meskin, P. E. Sharikov, F.Y. Ivanov, V. K. Churagulov, B. R. Tretyakov, Y. D. Mater. Chem. Phys. 104, 439 (2007).Google Scholar
13 rio, S. A. Elizia, Cavalcante, A. L. S. Sczancoski, A. J. C. Pizani, A. P. S. Varela, A. J. A. Espinosa, A.J.W.M. Longo, A.E. Nanoscale Res. Lett. 4, 1371 (2009).Google Scholar
14 Tang, J. Fabbri, J. Robinson, R. D. Zhu, Y. Herman, I. P. Steigerwald, M. L. Brus, L. E. Chem. Mater. 16, 1336 (2004).Google Scholar
15 Tirosh, E. Markovich, G. Adv. Mater. 19, 2608 (2007).Google Scholar
16 Cullity, B. D. Introduction to Magnetic Materials, Addison-Wiley, Reading, (1972).Google Scholar