Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T09:59:43.094Z Has data issue: false hasContentIssue false

Synthesis and ROMP of Metal Nanocluster Containing Norbornene Derivatives

Published online by Cambridge University Press:  17 March 2011

James H. Wynne
Affiliation:
Naval Research Laboratory, Code 6125 Washington, DC 20375, U.S.A.
Christopher T. Lloyd
Affiliation:
Naval Research Laboratory, Code 6125 Washington, DC 20375, U.S.A.
Steven E. Bullock
Affiliation:
Naval Research Laboratory, Code 6125 Washington, DC 20375, U.S.A.
Robert F. Cozzens
Affiliation:
Naval Research Laboratory, Code 6125 Washington, DC 20375, U.S.A.
Get access

Abstract

We report the synthesis of a series of highly functional metal chelated silyl- and tert-butyl-protected 2, 3-diaminomethyl norbornene derivatives. Subsequent alterations to the previously synthesized norbornene adducts afford many other derivatives containing such functionalities as alkyl, cyano, esters, and ethers. These derivatives are then subjected to ring-opening metathesis polymerization (ROMP) employing a ruthenium homogeneous catalyst to afford phase separated block polymers. The block polymers formed serve as unique templates for the formation of size controlled metal nanoclusters having a narrow dispersion. These metal nanoclusters containing diblock polymers are evaluated as unique electrical and optical materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chandrasekharan, N. and Kamat, P. V., Nanoletters 1, 67 (2001).Google Scholar
2. Yu, S., Lee, S. B., Kang, M., Martin, C. R., Nanoletters 1, 495 (2001).Google Scholar
3. Novak, J. P., Brousseau, L. C. III, Vance, F. W., Johnson, R. C., Lemon, B. I., Hupp, J. T., Feldheim, D. L., J. Am. Chem. Soc. 122, 12029 (2000).Google Scholar
4. Niidome, Y.; Hori, A., Takahashi, H., Goto, Y., Yamada, S., Nanoletters 1, 365 (2001).Google Scholar
5. Ditlbacher, H., Krenn, J. R., Lamprecht, B., Leitner, A., Aussenegg, F. R., Optics Letters 25, 563 (2000).Google Scholar
6. Martin, J. E. and Anderson, R. A., J. Chem. Phys. 111, 4273 (1999).Google Scholar
7. Stakhin, N. A., Russ. Phys. J. 41, 1107 (1998).Google Scholar
8. Zagorsky, V. V., Bochenkov, V. E., Ivashko, S. V., Sergeev, G. B., Materials Science and Engineering C 8–9, 329 (1999).Google Scholar
9. Buchmeiser, M. R., Chem. Rev. 100, 1565 (2000).Google Scholar
10. Benedicto, A. D., Novak, B. M., Grubbs, R. H., Macromolecules 25, 5893 (1992).Google Scholar
11. Wu, Z., Benedicto, A. D., Grubbs, R. H., Macromolecules 26, 4975 (1993).Google Scholar
12. Turkevich, J., Garton, G., Stevenson, P. C., J. Coll. Sci. Suppl. 1, 26 (1954).Google Scholar
13. Gröhn, F., Bauer, B. J., Akpalu, Y. A., Jackson, C. L., Amis, E. J., Macromolecules 33, 6042 (2000).Google Scholar
14. Lamprecht, B., Schider, G., Lechner, R. T., Ditlbacher, H., Krenn, J. R., Leitner, A., Aussenegg, F. R., Phys. Rev. Lett. 84, 4721 (2000).Google Scholar
15. Brousseau, L. C. III, Novak, J. P., Marinakos, S. M., Feldheim, D. L., Adv. Mater. 11, 447 (1999). W9.36.5Google Scholar