Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T11:28:38.762Z Has data issue: false hasContentIssue false

Synthesis and Electronic Transport Studies of Single-Crystalline In2O3 Nanowires

Published online by Cambridge University Press:  10 February 2011

Chao Li
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Daihua Zhang
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Song Han
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Xiaolei Liu
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Tao Tang
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Bo Lei
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Chongwu Zhou
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California, Los Angeles, CA 90089 – 0271, U. S. A.
Get access

Abstract

Single crystalline In203 nanowires were successful synthesized using a laser ablation method. Extensive material characterization such as X-ray diffraction (XRD) and selected area electron diffraction (SAED) revealed a cubic crystal structure for these nanowires with [110] as the growth direction. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used to determine the diameter and length of our nanowires. By using monodispersed gold clusters as the catalyst, these nanowires can be grown with well-defined diameters around 10 nm. Individual In2O3 nanowires have been utilized to construct field effect transistors, which confirmed In2O3 nanowires as n-type semiconductors and exhibited on / off ratios as high as 104 at room temperature. The temperature-dependence of the conductance revealed thermal emission as the dominating transport mechanism. Our work can lead to important applications such as chemical sensing for In2O3 nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tans, S. J., Verschueren, A. R. M. and Dekker, C., Nature 49, 393 (1998).Google Scholar
2. Kong, J., Zhou, C., Morpurgo, A., Soh, H.T., Quate, C.F., Marcus, C., Dai, H., Appl. Phys. A 69, 305, (1999).Google Scholar
3. Hu, J. T., Odom, T. W., Lieber, C.M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
4. Gudiksen, M. S., Wang, J. and Lieber, C. M., J. Phys. Chem B 105, 4062 (2001).Google Scholar
5. Liess, M., Thin Solid Films, 410, 183 (2002).Google Scholar
6. Zheng, M. J., Zhang, L. D., Li, G. H., Zhang, X. Y. and Wang, X. F., Appl. Phys. Lett. 79, 839 (2001).Google Scholar
7. Peng, X. S., Meng, G. W., Zhang, J., Wang, X. F., Wang, Y. W., Wang, C. Z. and Zhang, L. D., J. Mater. Chem. 12, 1602 (2002).Google Scholar
8. Pan, Z. W., Dai, Z. R., Wang, Z. R., Science 291, 1947 (2001).Google Scholar
9. G. Wyckoff, R. W., Crystal Structures (Interscience, New York), 1968.Google Scholar
10. Liu, X., Lee, C., Zhou, C., and Han, J., Appl. Phys. Lett. 79, 3329 (2001).Google Scholar
11. Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
12. Cui, Y., Duan, X., Hu, J., and Lieber, C. M, J. Phys. Chem. B. 104, 5213 (2000).Google Scholar
13. Zhou, C., Kong, J., and Dai, H., Appl. Phys. Lett., 76, 1597 (2000).Google Scholar