Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T02:01:54.784Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Strongly Fluorescent CdTe Nanocrystal Colloids

Published online by Cambridge University Press:  21 February 2011

Frederic V. Mikulec
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Moungi G. Bawendi
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We present a synthesis of colloidal CdTe nanocrystals whose absolute room temperature quantum yields are routinely above 60%. The preparation is based on the trioctylphosphine oxide (TOPO) method reported by Murray, with a more stalbe tellurium precursor now used as the chalcogenide source. The photoluminescence is continuously tunable over the range 590-760 nm and is as narrow as 135 meV (45 nm) FWHM. No deep trap luminescence is detected for the diameter range 4-11 nm. CdTe nanocrystals are characterized by UV/vis absorption, photoluminescence emission, transmission electron microscopy, and powder X-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.(a) Bruchez, M. J.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 20132016.Google Scholar
(b) Chan, W. C. W.; Nie, S. Science 1998, 281, 20162018.Google Scholar
2.(a) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354357.Google Scholar
(b) Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, O.; Rubner, M. F. App. Phys. Lett. 1995, 66, 13161318.Google Scholar
(c) Schlamp, M. C.; Peng, X. G.; Alivisatos, A. P. J. Appl. Phys. 1997, 82, 58375842.Google Scholar
(d) Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B.O.; Thomas, E. L.; Bawendi, M. G.; Rubner, M. F. J. AppL Phys. 1998, 83, 79657974.Google Scholar
3.(a) Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468471.Google Scholar
(b) Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 94639475.Google Scholar
4. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 70197029.Google Scholar
5.(a) Jarvis, R. F. J.; Mullenborn, M.; Yacobi, B. G.; Haegel, N. M.; Kaner, R. B. Mat. Res. Soc. Symp. Proc. 1992, 272, 229234.Google Scholar
(b) Rajh, T.; Micic, O. I.; Nozik, A. J. J. Phys. Chem. 1993, 97,1199912003.Google Scholar
(c) Pehnt, M.; Schulz, D. L.; Curtis, C. J.; Jones, K. M.; Ginley, D. S. App. Phys. Lett. 1995, 67, 21762178.Google Scholar
(d) Gao, M.; Kirstein, S.; Möhwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. J. Phys. Chem. B 1998, 102, 83608363.Google Scholar
6. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 87068715.Google Scholar
7.(a) Zingaro, R. A. J. Organomet. Chem. 1963, 1, 200.Google Scholar
(b) Zingaro, R. A.; Steeves, B. H.; Irgolic, K. J. Organomet. Chem. 1965, 4, 320323.Google Scholar
8. Rømming, C.; Iversen, A. J.; Songstad, J. Acta Chem. Scand. A 1980, 34, 333342.Google Scholar
9. Capasso, F.; Margaritondo, G. Heterojunction Band Discontinuities: Physics and Device Applications; Elsevier Science: New York, 1987.Google Scholar
10. Shiang, J. J.; Kadavanich, A. V.; Grubbs, R. K.; Alivisatos, A. P. J. Phys. Chem. 1995, 99, 1741717422.Google Scholar
11. Guinier, A. X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies; W. H. Freeman and Company: San Francisco, 1963.Google Scholar