Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T05:20:29.811Z Has data issue: false hasContentIssue false

Synthesis and Characterization of New Composite Oxides Related to the 2H-Perovskite Structure Type

Published online by Cambridge University Press:  16 February 2011

J. B. Claridge
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, hanno@psc.sc.edu
H.-C. zur Loye
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, hanno@psc.sc.edu
Get access

Abstract

The synthesis, structural characterization, and magnetic properties of three strontium rhodium oxides Sr6Rh5O15, Sr4Rh3O9+δ, and Sr9Rh7O21+δ, is presented. While Sr6Rh5O15 is an example of a commensurate n = 1 member of the A3n+3A'nBn+3O6n+9 family of oxides, Sr4Rh3O9+δ, and Sr9Rh7O21+°, are examples of incommensurate n =2 and n = 3 members. Sr6Rh5O15 crystallizes in space group R32, a = 19.3197(2) Å, c = 13.0418(1) Å. The Sr6Rh5O15 structure is a superstructure of the Ba6Ni5O15 structure type. Sr4Rh3O9+δ, and Sr9Rh7P21+δ crystallize in the superspace group with lattice parameters of a = 9.6007(6), c1 = 2.6881(2), c2 = 4.2373(3), and a = 9.6127(6), c1 = 2.6769(2), c2 = 4.252(1), respectively. Their magnetic data are consistent with antiferromagnetic coupling between the chains leading to an ordered state at low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlenker, C., and Dumas, J., in Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures, A Chemical and Physical Approach;, edited by Rouxel, J., D. Reidel Publishing Co.: Boston 1986, p. 135.Google Scholar
2. de Jongh, L.J., and Miedema, A.R., Adv. Phys. 23, 1 (1974).Google Scholar
3. Day, P. in Solid State Chemistry Compounds, edited by Cheetham, A.K. and Day, P., Clarendon Press: Oxford 1992, Chp. 2.Google Scholar
4. Collins, M.F. and Petrenko, A.O., Can. J. Phys. 75, 605 (1997).Google Scholar
5. Bergerhoff, G. and Schmitz-Dumont, O., Z. Anorg. Allg. Chem. 284, 10 (1956).Google Scholar
6. Nguyen, T.N., Giaquinta, D.M. and zur Loye, H.-C., Chem. Mater. 6,1642 (1994).Google Scholar
7. Nguyen, T.N., and zur Loye, H.-C. in Neutron Scattering and Materials Science:, edited by Neumann, D.A., Russel, T.P. and Weunsch, B.J., (Mater. Res. Soc. Proc. 376, Pittsburgh, PA 1995), p. 603.Google Scholar
8. Nguyen, T.N. and zur Loye, H.-C., J. Solid State Chem. 117, 300 (1995).Google Scholar
9. Nguyen, T.N., Lee, P.A. and zur Loye, H.-C., Science 271, 489 (1996).Google Scholar
10. Fjellvåg, H., Gulbrandsen, E., Aasland, S., Olsen, A. and Hauback, B.C., J. Solid State Chem. 124, 190 (1996).Google Scholar
11. Kagayama, H., Yoshima, K., Kosuge, K., Mitamura, H. and Goto, T., J. Phys. Soc. Jpn. 66, 1607 (1997).Google Scholar
12. Darriet, J. and Subramanian, M.A., J. Mater. Chem. 5, 543 (1995).Google Scholar
13. Campá, J.A., Puebla, E. Gutiérrez, Monge, M.A., Rasines, I., and Ruíz-Valero, C., J. Solid State Chem. 108, 203 (1994).Google Scholar
14. Harrison, W.T.A., Hegwood, S.L., and Jacobson, A.J., J. Chem. Soc., Chem. Commun. 1995, 1953.Google Scholar
15. Battle, P.D., Blake, G.R., Darriet, J., Gore, J.G., and Weill, F.G., J. Mater. Chem. 7, 1559 (1997).Google Scholar
16. Strunk, M. and Müller-Bushbaum, Hk., J. Alloys.Comp. 209, 189 (1994).Google Scholar
17. Dussarrat, C., Fompeyrine, J. and Darriet, J., Eu. J. Solid State Inorg. Chem. 32, 3 (1995)Google Scholar
18. Campá, J.A., Puebla, E. Gutiérrez, Monge, M.A., Rasines, I. and Ruíz-Valero, C., J. Solid State Chem. 126, 27 (1996).Google Scholar
19. Strunk, M. and Müller-Bushbaum, Hk., J. Alloys Comp. 209, 189 (1994).Google Scholar
20. Strunk, M. and Müller-Bushbaum, Hk., Z. Anorg. Allg. Chem. 620, 1565 (1994).Google Scholar
21. Lee, J. and Holland, G.F., J. Solid State Chem. 209, 189 (1991).Google Scholar
22. Cuno, E. and Müller-Bushbaum, Hk., Z. Anorg. Allg. Chem. 572, 175 (1989).Google Scholar
23. Claridge, J.B. and zur Loye, H.-C., Chem. Mater. 10, 2320 (1998).Google Scholar
24. Yamamoto, A., Acta Cryst. A52, 509 (1996).Google Scholar
25. Ukei, K., Yamamoto, A., Watanabe, Y., Shishido, T. and Fukada, T., Acta Cryst. B49, 67 (1993).Google Scholar
26. Onoda, M., Saeki, M., Yamamoto, A. and Kato, K., Acta Cryst. B49, 929 (1993).Google Scholar
27. Battle, P.D., Blake, G.R., Sloan, J., Vente, J.F., J. Solid State Chem. 136, 103 (1998).Google Scholar
28. Huvé, M., Renard, C., Abraham, F., Van Tendeloo, G., Amelinckx, S., J. Solid State Chem. 135, 1 (1998).Google Scholar
29. Evain, M., Boucher, F., Gourdon, O., Petricek, V., Dusek, M. and Bezdicka, P., Chem. Mater. 10, 3068 (1998).Google Scholar