Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T17:28:11.548Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Nanocrystalline Oxidizer/Monopropellant Formulations

Published online by Cambridge University Press:  01 February 2011

Thomas B. Brill
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
Bryce C. Tappan
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
Jun Li
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
Get access

Abstract

The objective of this work is to try to create new behaviors of energetic materials by using sol-gel processing and freeze drying to incorporate the energetic material into the fuel matrix at the nano particle size scale. Hydrazinium diperchlorate ([N2H6][ClO4]2) and resorcinol-formaldehyde were chosen in one example, and CL-20 and nitrocellulose were chosen in another. High solids loadings were achieved by the cryogel method. Characterization was carried out by elemental analysis, SEM, TEM, AFM, T-jump/FTIR spectroscopy, DSC, and drop-weight impact testing. The nanoscale formulations do indeed exhibit several different behaviors, such as enhanced burning characteristics and unusual morphologies, and appear to be a promising direction to pursue.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. T, , Tillotson, M., Hrubesh, L. W., Simpson, R. L., Lee, R. S., Swansiger, R. W., Simpson, L. R., J. Non-Cryst. Solids, 225, 358 (1998).Google Scholar
2. Simpson, R. L., Tillotson, T. M., Hrubesh, L. W., Gash, A. E., 31st Annual Conference of the ICT, Karlsruhe, Germany, June 27–30, 2000, p. V35.Google Scholar
3. Tillotson, T. M., Gash, A. E., Simpson, R. L., Hrubesh, L. W., Satcher, J. H. Jr., Poco, J. F., J. Non-Cryst. Solids, 235, 338 (2001).Google Scholar
4. Tappan, B. C., Brill, T. B., Prop., Explos. Pyrotech. 28, 72, (2003).Google Scholar
5. Tappan, B. C., Brill, T. B., Prop., Explos. Pyrotech. 28, (2003) (in press).Google Scholar
6. Pekala, R. W., J. Mater. Sci. 21, 3221 (1989).Google Scholar
7. Nielsen, A. T., Chafin, A. P., Christian, S. L., Moore, D. W., Nadler, M. P., Nissan, R. A., Vanderah, D. J., Gilardi, R. D., George, C. F., Flippen-Anderson, J. L., Tetrahedron 54, 11793 (1998).Google Scholar
8. Klug, H. P., Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; John Wiley & Sons, Inc.: New York, 1954.Google Scholar
9. Brill, T. B., Brush, P. J., James, K. J., Shepherd, J. E., Pfeiffer, K. J., Appl. Spectrosc. 46, 900 (1992).Google Scholar
10. Balzer, J. E., Field, J. E., Gifford, M. J., Proud, W. G., Wally, S. M., Combust. Flame, 130, 298 (2002).Google Scholar
11. Armstrong, R. W., Coffey, C. S., DeVost, V. F., Elban, W. L., J. Appl. Phys. 68, 979 (1990).Google Scholar