Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-08T17:55:31.951Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Manganese Vanadium Oxides as Cathodes in Lithium Batteries

Published online by Cambridge University Press:  21 February 2011

Fan Zhang
Affiliation:
Materials Research Center and Chemistry Department, State University of New York at Binghamton, Binghamton, NY 13902-6000
Peter Zavalij
Affiliation:
Materials Research Center and Chemistry Department, State University of New York at Binghamton, Binghamton, NY 13902-6000
M. Stanley Whittingham
Affiliation:
Materials Research Center and Chemistry Department, State University of New York at Binghamton, Binghamton, NY 13902-6000
Get access

Abstract

Our research on new cathode nano-materials for advanced lithium batteries has focused on the hydrothermal method for synthesis. We have synthesized two novel manganese vanadium oxides using the hydrothermal reactions of vanadium (V) pentoxide, [N(CH3)4]MnO4, and MnSO4 with an organic templating cation at 165°C. The 6-type [N(CH3)4]zMnyV2O5*nH2O has a monoclinic structure, a= 11.66(2)Å, b=3.610(9)Å, c= 13.91(4)Å, β= 108.8(2)°. It has a disordered V2O5 double layer and the Mn and N(CH3)4 ions reside between the layers. The γ-type MnV2O5 is orthorhombic, belongs to the space group Pnma, a=9.7585(2) Å, b=3.5825(l)Å, c= 11.2653(2) Å. These compounds were also characterized by electron microprobe, FTIR and TGA. They reacted readily with lithium, and their electrochemical behavior in lithium cells was determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., Li, J., Guo, J., and Zavalij, P., Materials Science Forum, 152–153, 99 (1994).Google Scholar
2. Whittingham, M. S., Guo, J., Chen, R., Chirayil, T., Janauer, G., and Zavalij, P., Solid State Ionics, 75, 257 (1995).Google Scholar
3. Zavalij, P., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K., and Jacobson, R. A., Z. Kryst., 211, 464 (1996).Google Scholar
4. Chirayil, T., Zavalij, P., and Whittingham, M. S., Solid State Ionics, 84, 163 (1996).Google Scholar
5. Chirayil, T., Zavalij, P., and Whittingham, M. S., J. Electrochem. Soc., 143, L193 (1996).Google Scholar
6. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Bull., 32, 701 (1997).Google Scholar
7. Riou, D. and Férey, G. r., J. Solid State Chem., 120, 137 (1995).Google Scholar
8. Riou, D. and Férey, G. r., J. Solid State Chem., 124, 151 (1996).Google Scholar
9. Zhang, Y., DeBord, J. R. D., O'Connor, C. J., Haushalter, R. C., Clearfield, A., and Zubieta, J., Angew. Chem. Int. Ed. Engl., 35, 989 (1996).Google Scholar
10. Chirayil, T. A., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., 10, 2629 (1998).Google Scholar
11. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., Mat. Res. Soc. Proc., 496, 367 (1998).Google Scholar
12. Zavalij, P. Y., Zhang, F., and Whittingham, M. S., Acta Cryst, C53, 1738 (1997).Google Scholar
13. Zavalij, P. Y., Zhang, F., and Whittingham, M. S., Acta Cryst, B55, 953 (1999).Google Scholar
14. Zhang, F., PhD Thesis, SUNY at Binghamton, (1999).Google Scholar
15. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., J. Mater. Chem., 9, 3137 (1999).Google Scholar
16. Zavalij, P. Y. and Whittingham, M. S., Acta Cryst., B55, 627 (1999).Google Scholar
17. Zhang, F. and Whittingham, M. S., Electrochem. Commun., 2, 69 (2000).Google Scholar
18. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., Electrochem. Commun., 1, 564 (1999).Google Scholar
19. Galy, J., Darriet, J., and Hagenmuller, P., Chim. Miner., 8, 509 (1971).Google Scholar