Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T21:30:05.623Z Has data issue: false hasContentIssue false

The Synthesis and Characterization of Energy-Conducting Polymers with Pendant Inorganic Chromophores

Published online by Cambridge University Press:  01 February 2011

James H. Alstrum-Acevedo
Affiliation:
University of North Carolina, Department of Chemistry Chapel Hill, NC 27599–3290
Joseph M. DeSimone
Affiliation:
University of North Carolina, Department of Chemistry Chapel Hill, NC 27599–3290
C. K. Schauer
Affiliation:
University of North Carolina, Department of Chemistry Chapel Hill, NC 27599–3290
John M. Papanikolas
Affiliation:
University of North Carolina, Department of Chemistry Chapel Hill, NC 27599–3290
Get access

Abstract

We are interested in the synthesis, characterization, and performance evaluation of functional nanoscale materials comprised of a polymeric scaffold with appended cationic transition-metal lumiphores. We have developed a methodology to prepare, spectroscopically characterize, and evaluate a series of organic copolymers functionalized with inorganic chromophores. Preparation of these hybrid systems first involves the synthesis of a linear AB diblock copolymeric scaffold in which A is polystyrene (PS) and B is poly(p-tert-butoxycarbonyloxystyrene) (PStBOC), using Reversible Addition-Fragmentation chain-Transfer (RAFT) radical polymerization. The PStBOC block (B) was converted into poly(4-hydroxystyrene) by acid hydrolysis of the t-BOC moieties, and Ru(II) trisbipyridyl complexes were covalently appended using standard ester coupling reagents. These lumiphores were selected due to their strong absorbance in the visible spectrum, chemical/photochemical stability, useful redox properties, and long-lived excited state lifetimes. Attachment of the cationic transition-metal chromophores to block B of these linear AB diblock copolymeric arrays is expected to promote solid-state self-assembly into nanoscale structures. The metal-loaded macromolecular assemblies were characterized spectroscopically and the determination of the solid-state morphology of films of these materials was investigated using Transmission Electron Microscopy (TEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fleming, C. N., Dupray, L. M., Papanikolas, J. M., Meyer, T. J. J. Phys. Chem. A 106, 2328 (2002).Google Scholar
2. Fleming, C. N., Jang, P., Meyer, T. J., Papanikolas, J. M. J. Phys. Chem. B 108, 2205 (2004).Google Scholar
3. Maxwell, K. A., Meyer, T. J., De Simone, J. M. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 39, 600 (1998).Google Scholar
4. Smith, G. D., Maxwell, K. A., De Simone, J. M., Meyer, T. J., Palmer, R. A. Inorg. Chem. 39, 893 (2000).Google Scholar
5. Sykora, M., Maxwell, K. A., De Simone, J. M., Meyer, T. J. Proc. Natl. Acad. Sci. U. S. A. 97, 7687 (2000).Google Scholar
6. Dupray, L. M. and Meyer, T. J. Inorg. Chem. 35, 6299 (1996).Google Scholar
7. Fleming, C. N., Maxwell, K. A., De Simone, J. M., Meyer, T. J., Papanikolas, J. M. J. Am. Chem. Soc. 123, 10336 (2001).Google Scholar
8. Keller, R. N. and Wycoff, H. D. Inorg. Synth. 2, 1 (1946).Google Scholar
9. Dupray, L. M., Devenney, M., Striplin, D. R., Meyer, T. J. J. Am. Chem. Soc. 119, 10243 (1997).Google Scholar
10. Peek, B. M., Ross, G. T., Edwards, S. W., Meyer, G. J., Meyer, T. J., Erickson, B. W. Int. J. Pept. Protein Res. 38, 114 (1991).Google Scholar
11. Xia, J. and Matyjaszewski, K. Macromolecules 30, 7697 (1997).Google Scholar
12. Castro, B., Evin, G., Selve, C., Seyer, R. Synthesis 6, 413 (1977).Google Scholar