Skip to main content Accessibility help
×
Home

Synthesis and Aggregation of BiBi2S3 Nanocapsules

  • Marina Vega-González (a1), Xim Bokhimi (a1), Manuel Aguilar-Franco (a1), Antonio Morales (a1) and Amado F. García-Ruiz (a2)...

Abstract

Nanocapsules of Bi2S3 with diameters between 5 and 10 nm and shells with an amorphous atomic distribution were synthesized at room temperature, with bismuth nitrate and thiourea as precursors. Aging the solution for several days a black powder precipitated made of a mixture of one amorphous phase and crystalline Bi2S3. When two capsules interacted between each other, the capsule regions in contact crystallized into bismuth sulfide, which explains the origin of the crystalline phase observed in the X-ray diffraction pattern. At this temperature, aggregation of the small nanocapsules also gave rise to necklaces of capsules, which eventually gave rise to nanotubes; these necklaces ordered forming bundles parallel to their largest dimension. When the solution was annealed at temperatures lower than 100 °C, aggregation gave rise to capsules as large as 1 μm in diameter, and tubes with similar diameters; in this case aggregation occurred between small and large nanocapsules. Because of the monomers aggregating had an external spherical symmetry and the low annealing temperatures, which were not high enough to produce sintering, all capsules and tubes formed during aggregation had porous walls, making these materials interesting for many applications.

Copyright

References

Hide All
1. Lokhande, C. D., Sankapal, B. R., Mane, R. S., Pathan, H. M., Muller, M., Giersig, M., Tributsch, H., and Ganeshan, V., Appl. Surf. Sci. 187, 108 (2002).
2. Sirimanne, P. M., Takahashi, K., and Sonoyama, N., Sakata, T., Solar Energy Mater. & Solar Cells 73, 175 (2002).
3. Peter, L. M., Wijayantha, K. G. U., Riley, D. J., and Waggett, J. P., J. Phys. Chem. B107, 8378 (2003).
4. Pawar, S. H., Bhosale, P. N., Uplane, M. D., and Tanhankar, S., Thin Solid Films 110, 165 (1983).
5. Nayak, B. B., Acharya, H. N., Mitra, G. B., and Mathur, B. K., Thin Solid Films 105, 17 (1983).
6. Rincón, M. E., Hu, H., Martínez, G., Suárez, R., and Bañuelos, J. G., Solar Energy Mater. & Solar Cells 77, 239 (2003).
7. Boudjouk, P., Remington, M. P. Jr , Grier, D. J., Jarabek, D. R., and McCarthy, G. J., Inorg. Chem. 37, 3538 (1998).
8. Suarez, R.,Nair, P. K., and Kamat, P. V., Langmuir 14, 3236 (1998).
9. Larson, R., Greania, V. A., Tonjes, W. C., Liu, R., Mahanti, S. D., and Olson, C. G., Phys. Rev. B65, 085108 (2002).
10. Peter, L. M., J. Electroanal. Chem. 98, 49 (1979).
11. Riley, D. J., Waggett, J. P., and Wijayantha, K. G. U., J. Materials Chem. 14, 704 (2004).
12. O'Reagan, B., and Gratzel, M., Nature 353, 737 (1991).
13. Arivuoli, D., Gnanam, F. D., and Ramasamy, P., J. Mater. Science Lett. 7, 711 (1988).
14. Chen, Y., Kou, H., Jiang, J., and Su, Y., Mater. Chem. and Phys. 82, 1 (2003).
15. Zhou, S., Li, J., Ke, W., and Lu, S., Matter Lett. 57, 2602 (2003).
16. Variano, B. F., Hwang, D. M., Sandroff, C. J., Wiltzius, P., Jing, T. W., and Ong, N. P., J. Phys. Chem. 91, 6455 (1987).
17. Shao, M. W., Mo, M. S., Cui, Y., Chen, G., and Qian, Y. T., J. Crystal Growth 233, 799 (2001).
18. Zhang, H., Ji, Y., Ma, X., Xu, J., and Yang, D., Nanotechnology 14, 974 (2003).
19. Hofmann, W., Z. Kristall. 86, 225 (1933).
20. Li, Q., Shao, M., Wu, J., Yu, G., and Qian, Y., Inorg. Chem. Comm. 5, 933 (2002).
21. Zhang, Z., Pinnavaia, T. J., J. Amer. Chem. Soc. 124, 12294 (2002).
22. Neves, M. C., Liz-Marzan, L. M., and Trindade, T., J. Colloid Interface Sci. 264, 391 (2003).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed