Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T11:58:21.732Z Has data issue: false hasContentIssue false

Syntheses and Optical Limiting Characterizations of a Series of Porphyrin-Buckminsterfullerene Dyads

Published online by Cambridge University Press:  10 February 2011

How-Ghee Ang
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore 118230
Zhi-Heng Loh
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore 118230
Leng-Leng Chng
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore 118230
Yiew-Wang Lee
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore 118230
Guo-Ying Yang
Affiliation:
DSO National Laboratories, 20 Science Park Drive, Singapore 118230
Kenneth J. McEwan
Affiliation:
Defence Evaluation and Research Agency, Malvern, Worcs, WR14 3PS, United Kingdom
John M. Robertson
Affiliation:
Defence Evaluation and Research Agency, Malvern, Worcs, WR14 3PS, United Kingdom
Keith L. Lewis
Affiliation:
Defence Evaluation and Research Agency, Malvern, Worcs, WR14 3PS, United Kingdom
Get access

Abstract

We report herein the syntheses and optical limiting characterizations of a series of porphyrin-C60 dyads in which the porphyrin and C60 moieties are held within close proximity of one another by an o-phenylene bridge. The electron-donating ability of the porphyrin moiety in the dyads is systematically varied through chemical modification. This allows us to control the ease of electron transfer from the porphyrin to the C60 moiety in these dyads. Optical limiting measurements at 532 nm using 3-ns pulses show that the limiting performances of the dyads are poorer relative to their model compounds. This could be due to an ultra-short lifetime for the charge-separated species or a depopulation of the triplet states by photoinduced electron transfer. The optical limiting performances of the free-base porphyrin-C60 dyads are also related to the electron- donating abilities of the meso substituents of the porphyrin moieties. 12PorphyC60 displays better limiting performance at 532 nm (with 3-ns and 15-ns pulses) compared to Val12PorphyC60. This trend has been rationalized in terms of the relative energies of the first excited singlet and triplet states of the fullerene moiety and the charge-separated state of the dyads.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tutt, L.W. and Kost, A., Nature 356, 225(1992).Google Scholar
2. McLean, D.G., Sutherland, R.L., Brant, M.C., Brandelik, D.M., Fleitz, P.A., Pottenger, T., Opt. Lett. 18, 858(1993).Google Scholar
3. Justus, B.L., Kafafi, Z.H., Huston, A.L., Opt. Lett. 18, 1603(1993).Google Scholar
4. Mishra, S.R., Rawat, H.S., Mehendale, S.C., Appl. Phys. Lett. 71, 46(1997).Google Scholar
5. Nalwa, H.S., Adv. Mater. 5, 341(1993).Google Scholar
6. Blau, W.J., Bryne, H.J., Cardin, D.J., Dennis, T.J., Hare, J.P., Kroto, H.W., Taylor, R., Walton, D.R.M., Phys. Rev. Lett 67, 1423(1991).Google Scholar
7. Kafafi, Z.H., Lindle, J.R., Pong, R.G.S., Bartoli, F.J., Lingg, L.J., Milliken, J., Chem. Phys.Lett. 188, 492(1992).Google Scholar
8. Blau, W., Bryne, H., Dennis, W.M., Kelly, J.M., Opt. Commun. 56, 25(1985).Google Scholar
9. Guha, S., Roberts, W.T., Ahn, B.H., Appl. Phys. Lett. 68, 3686(1996).Google Scholar
10. Chen, P., Tomov, I.V., Dvorniknov, A.S., Nakashima, M., Roach, J.F., Alabran, D.M., Rentzepis, P.M., J. Phys. Chem. 100, 17507(1996).Google Scholar
11. Su, W., Cooper, T.M., Brant, M.C., Chem. Mater. 10, 1212(1998).Google Scholar
12. Yang, L., Dorsinville, R., Alfano, R.R., Taliani, C., Ruani, G., Zamboni, R., Tubino, R., Synth. Met. 41–43, 3197 (1991).Google Scholar
13. Zhou, Q.L., Heflin, J.R., Wong, K.Y., Zamani-Khamiri, O., Garito, A.F., Phys. Rev. A 43, 1673(1991).Google Scholar
14. Rodenberger, D.C., Heflin, J.R., Garito, A.F., Nature 359, 309(1992).Google Scholar
15. Lascola, R. and Wright, J.C., Chem. Phys. Lett. 269, 79(1997); 290, 117(1998).Google Scholar
16. Cha, M., Sariciftci, N.S., Heeger, A.J., Hummelen, J.C., Wudl, F., Appl. Phys. Lett. 67, 3850(1995).Google Scholar
17. Tang, B.Z., Peng, H., Leung, S.M., Au, C.F., Poon, W.H., Chen, H., Wu, X., Fok, M.W., Yu, N.-T., Hiraoka, H., Song, C., Fu, J., Ge, W., Wong, G.K.L., Monde, T., Nemoto, F., Su, K.F.,. Macromolecules 31, 103(1998).Google Scholar
18. Flom, S.R., Pong, R.G.S., Bartoli, F.J., Kafafi, Z.H., Mol. Cryst. Liq. Cryst. 256, 289(1994).Google Scholar
19. Brandelik, D.M., Frock, L.R., Brant, M.C., McLean, D.G., Sutherland, R.L., Proc. SPIE 2530, 188(1995).Google Scholar
20. Heflin, J.R., Wang, S., Marciu, D., Figura, C., Yordanov, R., Proc. SPIE 2530, 176(1995).Google Scholar
21. Gu, G., Huang, H., Yang, S., Yu, P., Fu, J., Wong, G.K., Wan, X., Dong, J., Du, Y., Chem. Phys. Lett 289, 167(1998).Google Scholar
22. Heflin, J.R., Marciu, D., Figura, C., Wang, S., Burbank, P., Stevenson, S., Dorn, H.C., Appl. Phys. Lett. 72, 2788(1998).Google Scholar
23. Lindsey, J.S., Schreiman, I.C., Hsu, H.C., Kearney, P.C., Marguerettaz, A.M., J. Org. Chem. 52, 827(1987).Google Scholar
24. Lindsey, J.S., Wagner, R.W., J. Org. Chem. 54, 828(1989).Google Scholar
25. Prato, M. and Maggini, M., Acc. Chem. Res. 31, 519(1998).Google Scholar
26. Leach, S., Vervolet, M., Desprès, A., Bréheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R., Walton, D.R.M., Chem. Phys. 160, 451(1992).Google Scholar
27. Liddell, P.A., Sumida, J.P., MacPherson, A.N., Noss, L., Seely, G.R., Clark, K.N., Moore, A.L., Moore, T.A., Gust, D., Photochem. Photobiol. 60, 537(1994).Google Scholar
28. Kuciaskas, D., Lin, S., Seely, G.R., Moore, A.L., Moore, T.A., Gust, D., Drovetskaya, T., Reed, C.A., Boyd, P.D.W., J. Phys. Chem. 100, 15926(1996).Google Scholar
29. Imahori, H., Hagiwara, K., Aoki, M., Akiyama, T., Tamiguchi, S., Okada, T., Shirakawa, M., Sakata, Y., J. Am. Chem. Soc. 118, 11771(1996).Google Scholar
30. Baran, P.S., Monaco, R.R., Khan, A.U., Schuster, D.I., Wilson, S.R., J. Am. Chem. Soc. 119, 8363(1997).Google Scholar
31. McEwan, K.J., Lewis, K. L., Ang, H.-G., Loh, Z.-H., Chng, L.-L., Lee, Y.-W., In Organic Nonlinear Optical Materials and Devices, edited by B. Kippelen, H. Lackritz, R. Claus, Mater. Res. Soc. Symp. Proc. 561, 81(1999).Google Scholar
32. Hunter, C.A. and Sanders, J.K.M., J. Am. Chem. Soc. 112, 5525(1990).Google Scholar
33. Sun, Y.-P., Ma, B., Bunker, C.E., J. Phys. Chem. A 102, 7580(1998).Google Scholar
34. Mansour, K., Alvarez, D., Perry, K.J., Choong, I., Marder, S.R., Perry, J., Proc. SPIE 1853, 132(1993).Google Scholar
35. Beljonne, D., O'Keefe, G.E., Hamer, P.J., Friend, R.H., Anderson, H.L., Brédas, J.L., J. Chem. Phys. 106, 9439(1997).Google Scholar