Skip to main content Accessibility help

Swelling Behavior of Chitosan Hydrogel in Ionic Liquid-Water Binary System

  • Chang Kee Lee (a1), Sang Jun Park (a2), Seong Gil Yoon (a3), Kwang Min Shin (a4), Su Ryon Shin (a5), Bon Kang Gu (a6), Min Sup Kim (a7), Min Kyoon Shin (a8), Yu Jin Kim (a9) and Seon Jeong Kim (a10)...


The swelling behavior of chitosan hydrogels in ionic liquid–water binary systems was studied using hydrophilic room-temperature ionic liquids (RTILs) to elucidate the swelling properties of chitosan hydrogels. It was confirmed that chitosan hydrogels are much stiffer after immersing in a pure RTIL because the water existing inside the chitosan polymer network is extracted into the RTIL. The pH of the binary system changes when the RTIL is in contact with water. The chitosan hydrogels were fully dissociated at a 90% water content in the BMI-BF4-water binary system. The equilibrium binary system content behavior of the chitosan hydrogels depended upon the amount of free water present. The water behavior in a pure RTIL was examined using differential scanning calorimetry.



Hide All
1 Shi, J.; Guo, Z.-X.; Zhan, B.; Luo, H.; Li, Y.; Zhu, D. J. Phys. Chem. B. 2005, 109, 14789.
2 Kim, S. J.; Kim, H. I.; Park, S. J.; Kim, S. I. Sensors and Actuators A 2004, 115, 146.
3 Kim, S. J.; Park, S. J.; Kim, S. I. Smart Materials and Structures 2004, 13, 317.
4 Wu, L.-Q.; Gadre, A. P.; Yi, H.; Kastantin, M. J.; Rubloff, G. W.; Bentley, W. E.; Payne, G. F.; Ghodssi, R. Langmuir 2002, 18, 8620.
5 Wu, S.; Zeng, F.; Zhu, H.; Tong, Z. J. Am. Chem. Soc. (Communication) 2005, 127, 2048.
6 Wen, L.; Andrei, G. F.; Baohua, Q.; Elisabeth, S.; Benjamin, R. M.; Jie, D.; Geoffrey, M. S.; Jakub, M.; Dezhi, Z.; Grodon, G. W.; Douglas, R. M.; Stewart, A. F.; Maria, F. Science 2002, 297, 983.
7 Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. J. Amer. Chem. Soc. 2005, 127, 4976.
8 McEwen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L. J. Electrochem. Soc. 1999, 146, 1687.
9 Dezhi, Z.; Geoffrey, M. S.; Gordon, G. W.; Churat, T.; Douglas, R. M.; Maria, F.; Jiazeng, S. Electrochim. Acta 2003, 48, 2355.
10 Janiszewska, L.; Osteryoung, R. A. J. Electrochem. Soc. 1987, 1344, 2787.
11 Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192.
12 Laurent, G.; Juliette, S. P.; Pierre, L. J. Solution Chem. 2004, 33, 1333.
13 Kim, S. J.; Lee, C. K.; Kim, S. I. Journal of Applied Polymer Science 2004, 92, 14671472.
14 Chiu, H.-C.; Lin, Y.-F.; Hung, S.-H. Macromolecules 2002, 35, 5235.
15 Ito, T.; Yamaguchi, T. J. Am. Chem. Soc.; (Communication) 2004, 126, 6202.
16 Douglas, R. M.; Stewart, A. F. ACS Symposium Series, 2003, 856, 264.
17 Rinaudo, M.; Pavlov, G.; Desbrieres, J. Polymer 1999, 40, 7029.
18 Sorlier, P.; Denuziere, A.; Viton, C.; Domard, A. Biomacromolecules 2001, 2, 765.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed