Skip to main content Accessibility help
×
Home

Surface Structure and Morphology of Mg-Segregated, Epitaxial Fe3O4 Thin Films on Mgo(001)

  • J. F. Anderson (a1), Markus Kuhn (a1), Ulrike Diebold (a1), K. Shaw (a2), P. Stroyanov (a2) and D. Lind (a2)...

Abstract

We have investigated the structural and compositional changes that are induced by the segregation of substrate Mg to the surface of 1μm-thick Fe3O4 films on MgO(001). The thin films have been grown with plasma-assisted MBE, and characterization with RHEED (reflection high-energy electron diffraction), x-ray diffraction (XRD), and Superconducting Quantum Interference Device (SQUID) magnetometry show slightly strained, single-crystalline Fe3O4 films. For the surface studies, we have combined Low-Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM). Initial and final surface characterization employed X-ray Photoelectron Spectroscopy (XPS) and Ion Scattering Spec-troscopy (ISS) respectively. The surfaces of the MBE-grown samples are flat and show a (√2 × √2)R45° reconstruction with respect to the Fe3O4 surface unit cell. We observe the onset of Mg segregation to the surface at around 700 K, with long, narrow extensions of terraces being observed growing along the [110] and [110] directions. Upon prolonged heating at 800 K, massive Mg segregation to the surface is observed. Heating in an oxygen atmosphere induces a 1×4 surface reconstruction, and results in extremely long (≈ 1000 Å), wide terraces.

Copyright

References

Hide All
[1] Wyckoff, R., Crystal Structure, Vol. 1, Wiley & Sons, New York, 1963, pp. 79.
[2] Cox, P. A., Transition Metal Oxides, An Introduction to Their Electronic Structure and Properties, Clarendon Press, Oxford, (1992).
[3] Samsonov, G., The Oxide Handbook, IFI/Plenum, New York, (1982).
[4] Jansen, R., Brabers, V. A. M., and van Kempen, H., Surf. Sci., 328:237247, (1995).
[5] Kim, Y. J., Gao, Y., and Chambers, S. A., Surf. Sci., 371:358(1997).
[6] Wiesendanger, R., Shvets, I. V., and Coey, J. M. D., Vac. Sci. Technology B., 12(3):21182121, 1994.
[7] Wiesendanger, R., Shvets, I.V., Bürgler, D., Tarrach, G, Gündtherodt, H.-J., and Coey, J.M., Z. Phys. B, 86:1, 1992.
[8] Tarrach, G., Bürgler, D., Schaub, T., Wiesendanger, R., and Güntherodt, H.-J., Surf. Sei., 285:114, (1993).
[9] Voogt, F. C., Hibma, T., Zhang, G. L., Hoefman, M., and Niesen, L., Surf. Sci., 331–333:15081514, (1995).
[10] Gaines, J. M., Bloemen, P. J. H., Kolhepp, J. T., Bulle-Lieuwma, C. W. T, Wolf, R. M., Reinders, A., Jungblut, R. M., Heijden, P. A. A., van Eem-eren, J. T. W. M., aan de Stegge, J., Surf. Sci., 373:8594, (1997).
[11] Levin, Ernest M., Robbins, Carl R., McMurdie, Howard F., and Reser, Margie K. (Editors), Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, Third edition, (1964), pp 54.
[12] van Avlock, Wilhelm H., Editor. Handbook of Microwave Ferrite Materials. Academic Press, 1965.
[13] Diebold, U., Anderson, J. F., Ngl, K-On, and Vanderbilt, D.. Phys. Rev. Lett., 77(7):1322, (1996).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed