Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T23:01:24.951Z Has data issue: false hasContentIssue false

Surface Preparation and Growth Condition Dependence of Cubic GaN Layer on (001) GaAs by Hydride Vapor Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

H. Tsuchiya
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennohdai, Tsukuba, Ibaraki 305, Japan
K. Sunaba
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennohdai, Tsukuba, Ibaraki 305, Japan
S. Yonemura
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennohdai, Tsukuba, Ibaraki 305, Japan
T. Suemasu
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennohdai, Tsukuba, Ibaraki 305, Japan
F. Hasegawa
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1 Tennohdai, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

GaN buffer layers and thick GaN layers were grown on (001) GaAs substrates by hydride vapor phase epitaxy. The ratio of cubic to hexagonal components in the grown layer was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) plane and hexagonal (1011) planes measured by w scan. The optimum growth conditions were thermal cleaning at 600°C, growth temperature of 500°C and thickness of 30 nm for the buffer layer, and the Will ratio of 300 for thick GaN growth at 800°C. Cubic component in the layer grown with those conditions was more than 85% and strong cubic photoluminescence emission was observed at 377 nm (3.28 eV).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Japan. J. Appl. Phys., 35, L74 (1996).Google Scholar
2. Kahn, M.A., Shur, M.S., Kuznia, J.N., Chen, Q., Burn, J. and Schaff, W., Appl. phys. Lett., 66, 1083 (1995).Google Scholar
3. Mizuta, M., Fujieda, S., Matsumoto, Y. and Kawamura, T., Japan. J. Appl. Phys., 25, L945 (1986).Google Scholar
4. Tsuchiya, H., Sunaba, K., Yonemura, S., Suemasu, T. and Hasegawa, F., Japan. J. Appl. Phys., 36, LI (1997).Google Scholar
5. Lei, T., Fancilli, M., Monar, R.J., Moustakas, T.D., Graham, R.J. and Scanlon, J., Appl. phys. Lett., 59, 944 (1991).Google Scholar
6. Brandt, O., Yang, H., Jenichen, B., Suzuki, Y., Daweritz, L. and Ploog, K.H., Phys. Rev. B, 52, R2253 (1995).Google Scholar
7. Yamaguchi, A.A., Manako, T., Sakai, A., Sunakawa, H., Kimura, A., Nido, M. and Usui, A., Japan. J. Appl. Phys., 35, L873 (1996).Google Scholar
8. Nakadaira, A. and Tanaka, H., Proc. Int. Symp. Blue laser & Light Emitting Diodes, Chiba, Japan 1996 (Ohmsha Ltd., Tokyo, 1996) pp. 90.Google Scholar
9. Tietjen, J.J. and Amick, J.A., J. Electrochem. Soc, 133, 724 (1966).Google Scholar
10. Hiramatsu, K., Detchprohm, T. and Akasaki, I., Japan. J. Appl. Phys., 32, 1528 (1993).Google Scholar
11. Miura, Y., Takahashi, N., Koukitu, A. and Seki, H., Japan. J. Appl. Phys., 35, 546 (1996).Google Scholar
12. Kuwano, N., Nagatomo, Y., Kobayashi, K., Oki, K., Miyoshi, S., Yaguchi, H., Onabe, K. and Shiraki, Y., Japan. J. Appl. Phys., 33, 18 (1994).Google Scholar
13. Sato, M., J. Appl. Phys., 78, 2123 (1995).Google Scholar
14. Okumura, H., Yoshida, S. and Okahisa, T., Appl. phys. Lett., 64, 2997 (1994).Google Scholar