Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T02:37:12.088Z Has data issue: false hasContentIssue false

Surface Photovoltage Effects in Photoemission from Diamond Surfaces

Published online by Cambridge University Press:  15 February 2011

C. Bandis
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164–2814
B. B. Pate
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164–2814
Get access

Abstract

Photovoltaic effects in ultraviolet photoemission spectroscopy of the in-situ “rehydrogenated”, and reconstructed (111) diamond surfaces are evaluated. We show that photovoltaic charging effects during photoemission studies of the in-situ “re-hydrogenated” (111)-(l×l):H diamond surface are significant at temperatures as high as room temperature. In contrast, experiments on the reconstructed (111 )-(2×l) diamond surface find no photovoltaic charging which suggests that the surface exhibits relatively high conductivity (effectively grounded surface). These results demonstrate that extra care should be taken in determining the Fermi level pinning position relative to the bands at diamond surfaces and interfaces. The assumption that the UPS photoelectron spectra reflect the equilibrium energy band arrangement should be experimentally confirmed in each case, especially when wide band gap materials are involved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Himpsel, F. J., Heimann, P., and Eastman, D. E., Solid State Commun. 36, 631 (1980).Google Scholar
2. Pate, B. B., Surf. Sci. 165, 83 (1986).Google Scholar
3. Tachibana, T., Glass, J. T., and Nemanich, R. J., J. Appl. Phys. 73 (2), 835 (1993).Google Scholar
4. Weide, J. van der and Nemanich, R. J., Phys. Rev. B 49 (19), 13629 (1994).Google Scholar
5. Bandis, C. and Pate, B. B., Phys. Rev. B 52 (16), 12056 (1995).Google Scholar
6. Hecht, M. H., J. Vac. Sci. Technol. B 8 (4), 1018 (1990).Google Scholar
7. Hecht, M. H., Phys. Rev. B 41 (11), 7918 (1990).Google Scholar
8. Hecht, M. H., Phys. Rev. B 43 (14), 12102 (1991).Google Scholar
9. Alonso, M., Cimino, R., and Horn, K., Phys. Rev. Lett. 64 (16), 1947 (1990).Google Scholar
10. Horn, K., Alonso, M., and Cimino, R., Appl. Surf. Sci. 56–58, 271 (1992).Google Scholar
11. Waclawski, B. J. et al., J. Vac. Sci. Technol. 21 (2), 368 (1982).Google Scholar
12. Himpsel, F. J. et al., Phys. Rev. B 20 (2), 624 (1979).Google Scholar
13. Pate, B. B. etal., J. Vac. Sci. Technol. 19 (3), 349 (1981).Google Scholar
14. Thoms, B. D. et al., J. Chem. Phys. 100 (11), 8425 (1994).Google Scholar
15. Bandis, C. and Pate, B. B., Surf. Sci. Lett. 345, L23 (1996).Google Scholar
16. Mackey, B. L. et al., in Diamond Materials IV, edited by Ravi, K. V. and Dismukes, J. P., Electrochemical Society Proceedings, Vol.95 (The Electrochemical Society, Pennington, 1995).Google Scholar
17. Mackey, B. L. et al., Phys. Rev. B 52 (24), R17009 (1995).Google Scholar