Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:58:30.249Z Has data issue: false hasContentIssue false

Surface Microchemistry Associated with Particle Bombardment on Ni(111)

Published online by Cambridge University Press:  03 September 2012

Jiun-Chan Yang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
Hsin-Yen Hwang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
Che-Chen Chang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
Get access

Abstract

The influence of particle bombardment on surface reactivity is examined by using the reaction of CO on the Ni(111) surface as a model system. Thermal desorption studies shows that a large amount of residual CO may be deposited on the surface during ion bombardment. An appreciable amount of oxygen can be produced on the surface by collision-induced CO dissociation. A new dlesorption state of CO is also formed. The activation energy for CO desorption from this new state is estimated to be about 90 kJ/mol, which corresponds to a decrease of the C-Ni bond energy of 25 – 30 kJ/mol as the sample evolves from a smooth to a damaged state. The dipole-dipole repulsion is present between CO molecules adsorbed on the ion-bombarded surface, which causes CO to desorb at a lower temperature for higher CO exposures. Under similar bombardment conditions, the sticking probability of CO on the bombarded surface decreases with decreasing momentum of the impinging particle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sze, S. M., VLSI Technology (McGraw-Hill, New York, 1988).Google Scholar
2. a) Netzer, F. P., Madey, T. E., J. Chem. Phys. 76 (1982) 710; b) J. C.Bertolini, B. Tardy, Surface Sci. 102 (1981) 131.Google Scholar
3. Benziger, J. B., Preston, R. E., Surface Sci. 141 (1984) 567.Google Scholar
4. Caputi, L. S., Agostino, R. G., Amoddeo, A., Molinaro, S., Chiarello, G., Colavita, E., A. Santaniello, Surface Sci. 289 (1993) L591.Google Scholar
5. Rendulic, K. D., Winkler, A., Steinruck, H. P., Surface Sci. 185 (1987) 469.Google Scholar
6. Chang, C.-A., Surface Sci, 95 (1980) L239.Google Scholar
7. Murayama, Z., Kojima, I., Miyazaki, E., Yasumori, I., Surface Sci. 118 (1982) L281.Google Scholar
8. Lin, T.-S., Lu, H.-J., Gomer, R., Surface Sci. 234 (1990) 251.Google Scholar
9. Berko, A., Bonzel, H. P., Surface Sci. 251/252 (1991) 1112.Google Scholar
10. Chang, C.-C., Khong, C., Saiki, R., J. Vac. Sci. Technol. A11 (1993) 2122.Google Scholar
11. Tracy, J. C., J. Chem. Phys. 56 (1972) 2736; E. G. Keim, F. Labohm, O.L.J. Gijzeman, G. A. Bootsma, J. W. Geus, Surface Sci. 112 (1981) 52.Google Scholar
12. Zahidi, E., Martel, R., Adnot, A., McBreen, P. H., Surface Sci. 273 (1992) 353.Google Scholar
13. Christmann, K., Schober, O., Ertl, G., J. Chem. Phys. 60 (1974) 4719.Google Scholar
14. Erley, W., Wagner, H., Surface Sci. 74 (1978) 333.Google Scholar
15. Campuzano, J. C., Dus, R., Greenler, R. G., Surface Sci. 102 (1981) 172.Google Scholar
16. Benndorf, C., Meyer, L., Surface Sci. 251/252 (1991) 872.Google Scholar
17. Carter, G., in Sputtering by Particle Bombardment I, ed. Behrisch, R., 1983, Springer Verlag.Google Scholar
18. Xu, Z., Surnev, L., Uram, K. J., Yates, J. Jr., Surface Sci. 292 (1993) 235.Google Scholar