Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:08:52.170Z Has data issue: false hasContentIssue false

Surface Mediated Processes in the Interaction of Spent Fuel or alpha-doped UO2 with H2

Published online by Cambridge University Press:  01 February 2011

Daqing Cui
Affiliation:
Daqing.Cui@Studsvik.se, Chalmers University of Technology, Nuclear Chemistry, Kemivägen 4, Göteborg, 412 96, Sweden, +46-8-4598561, +46 8 57938611
Ella Ekeroth
Affiliation:
Ella.Ekeroth@Studsvik.se, Studsvik Nuclear AB, Nyköping, 611 82, Sweden
Patrik Fors
Affiliation:
Patrik.FORS@ext.ec.europa.eu, Chalmers University of Technology, Nuclear Chemistry, Göteborg, 412 96, Sweden
Kastriot Spahiu
Affiliation:
kastriot.spahiu@skb.se, Chalmers University of Technology, Nuclear Chemistry, Göteborg, 412 96, Sweden
Get access

Abstract

In most deep disposal concepts, large amounts of hydrogen are expected to be produced by the anoxic corrosion of massive iron containers. At repository temperatures, hydrogen is quite inert and is not expected to contribute to the redox capacity of the deep groundwaters. In several recent works, a large impact of dissolved hydrogen on the dissolution of the LWR or MOX fuel and UO2(s) doped with 233U or 238Pu has been observed. For hydrogen concentrations above a certain limit, the dissolution rates of these highly radioactive materials drop to very low values. A discussion of the results obtained with spent fuel or α-doped UO2 in the presence of a range of hydrogen concentrations is presented. Typical for all measurements under such conditions are the very low long term concentrations of uranium and other redox-sensitive radionuclides, such as Tc and the minor actinides. The concentrations of U are systematically lower than the values measured during UO2(s) solubility measurements carried out in the presence of strong reducing agents. Measurements of the radiolytic oxygen after long leaching periods result in values below detection limit. The investigation of the surface of spent fuel or UO2(s) pellets doped with 233U by XPS after long periods of testing shows absence of oxidation. The kinetics of the release of non-redox sensitive elements such as Sr and Cs, used to estimate fuel matrix dissolution rates, is also discussed. An attempt is made to propose potential mechanisms responsible for the observed behaviour, based mainly on data from studies on the interaction of water adsorbed on the surfaces of metal oxides or actinide oxides with radiation. Another important effect observed in recent studies is the existence of a threshold for the specific alpha activity below which no measurable influence of the alpha radiolysis on the uranium release from UO2 is observed. The importance of such a threshold for the behaviour of spent fuel under repository conditions encompassing very long time scales will be discussed, as well as the necessity to better investigate the mechanisms of recombination reactions in a thin water layer on the surface of actinide oxides affected by α-radiolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kleykamp, H. J. Nucl. Mat., 131 221246 (1985).Google Scholar
2 Puigdomenech, I. Trotignon, L. Kotelnikova, L. S. Pedersen, K. Griffault, L. Michaud, V. Lartigue, J-E., Hama, K. Yoshida, H. West, J. Bateman, K. Milodowski, A. Banwart, S. Perez, J. Rivas, Tullborg, E-L., Mat. Res. Soc. Symp. Proc., 608 179184 (2000).Google Scholar
3 Shoesmith, D. W. J. Nucl. Materials, 282 131 (2000).Google Scholar
4 Johnson, L.H. ed., NAGRA Technical Report NTB 04-09, Wettingen Switzerland (2005) 43 p.Google Scholar
5 Garrels, R.M. and Christ, C.L.: Solutions, Minerals, and Equilibria, Harper & Row, New York (1965), 450 p.Google Scholar
6 Liu, L. and Neretnieks, I. Nuclear Technology, 138 6977 (2002).Google Scholar
7 Sellin, P. Mat. Res. Soc. Symp. Series, 663 755763 (2001).Google Scholar
8 Johnson, L. H. Shoesmith, D. W. Spent fuel. In: Radioactive Waste Forms for the Future, Eds.:W, W. Lutze and Ewing, R. North-Holland, Amsterdam (1988), p 685.Google Scholar
9 Schmidt, K.H. J. Phys. Chem, 81 12571263 (1977).Google Scholar
10 Spahiu, K. Cui, D. Lundström, M., Radiochimica Acta, 92 625629 (2004).Google Scholar
11 Carbol, P. Cobos-Sabate, J., Glatz, J-P., Grambow, B. Kienzler, B. Loida, A. Valiente, A. Martinez Esparza, Metz, V. Quiñones, J., Ronchi, C. Rondinella, V. Spahiu, K. Wegen, D. H. Wiss, T. SKB Technical Report TR-05-09, Stockholm (2005), 139 p.Google Scholar
12 Ekeroth, E. Granfors, M. Schild, D. Spahiu, K. Proceedings Migration 07, Munich (2007).Google Scholar
13 Rai, D. Felmy, A. R. and Ryan, J. L. Inorg. Chem. 29 260264 (1990).Google Scholar
14 Loida, A., Metz, V. Kinzler, B. Mat. Res. Soc. Symp. Series, 985 1520 (2007).Google Scholar
15 Metz, V. Bohnert, E. Kelm, M. Schild, D. Reinhardt, J. Kienzler, B. and Buchmeiser, M. Mat. Res. Soc. Symp. Series, 985 3340 (2007).Google Scholar
16 Zehavi, D. Rabani, J. J. Phys. Chem. 76(1972) 312319.Google Scholar
17 Pastina, B. and LaVerne, J. A. J. Phys. Chem. A 105 93169322 (2001).Google Scholar
18 Eriksen, T. Jonsson, M. SKB Techical Report TR-07-06, Stockholm (2007), 19 p.Google Scholar
19 Eriksen, T. Jonsson, M. Merino, J. J. Nucl. Mat, doi:10.1016/j.jnucmat.2007.12.003. (2008).Google Scholar
20 Spahiu, K. Werme, L. Eklund, U-B., Radiochim Acta, 88 507511 (2000).Google Scholar
21 Albinsson, Y. Jensen, A, Oversby, V. Werme, L. Mat. Res. Soc. Symp., 757 407413 (2003).Google Scholar
22 Ollila, K. Albinsson, Y. Oversby, V. Cowper, M. SKB Technical Report TR-03-13, (2003).Google Scholar
23 Spahiu, K. Eklund, U-B, Cui, D. Lundström, M.,. Mat. Res. Soc. Symp., 713 633638 (2002).Google Scholar
24 Lloida, A. Grambow, B. Geckeis, H. Proceedings ICEM 01, Bruges, Belgium, (2001).Google Scholar
25 Loida, A. Metz, V. Kienzler, B. and Geckeis, H. J. Nucl. Mat. 346 (2005) 2431.10.1016/j.jnucmat.2005.05.020Google Scholar
26 Jonsson, M. Nielsen, F. Ekeroth, E. Eriksen, T. Mat. Res. Soc. Symp., 807 385390 (2003).Google Scholar
27 Grambow, B., Loida, A. Dressler, P. Geckeis, H. Gago, J., Casas, I. Pablo, J. de, Gimenez, J. Torrero, M.E. FZKA Report 5702, Forschungszentrum Karlsruhe, (1996).Google Scholar
28 Grambow, B., Loida, A. Martinez-Esparza, A., Diaz-Arocas, P., Pablo, J. de, Paul, J.-L. Marx, G., Glatz, J.-P., Lemmens, K., Ollila, K. Christensen, H. EUR 19140 EN, (2000).Google Scholar
29 Farrel, J. Bostick, W. Jarabek, R. Fiedor, N. Ground Water 37(4), 618 (1999).Google Scholar
30 Cui, D. Spahiu, K. Radiochim., Acta 90 16 (2002).Google Scholar
31 King, F. Quinn, M. J. and Miller, H. H. SKB Technical Report TR-99-27 (1999).Google Scholar
32 Shoesmith, D. W. NWMO Technical Report TR-2007-03, Toronto (2007).Google Scholar
33 Sunder, S. Boyer, G. D. Miller, N. H. J. Nucl. Mater. 175 163169 (1990).Google Scholar
34 Broczkowski, M. E. Noel, J. J. and Shoesmith, D. W. J. Nucl. Mat., 346 1623 (2005).Google Scholar
35 King, F. and Shoesmith, D. SKB Technical Report TR-04-20, Stockholm (2004).Google Scholar
36 Broczkowski, M. E. Goldik, J. Santos, B. Noel, J. and Shoesmith, D. Mat. Res. Soc. Symp. Proc. 985 314 (2007).Google Scholar
37 Nilsson, S. Jonsson, M. J. Nucl. Mat., 372 160163 (2008).Google Scholar
38 Trummer, M. Nilsson, S, Jonsson, M. J. Nucl. Mat. 2008, submitted.Google Scholar
39 Jonsson, M. Nielsen, F. Roth, O. Ekeroth, E. S. Nilsson and Hossain, M. Environ. Sci. Technol. 41 70877093 (2007).10.1021/es070832yGoogle Scholar
40 Cui, D. Low, J. Sjöstedt, C. J., Spahiu, K. Radiochim., Acta 92 551555 (2004).Google Scholar
41 Muzeau, B. Ph. D., Thesis University Paris XI, (Orsay 2007), 274p.Google Scholar
42 Rondinella, V. Cobos, J. and Wiss, T. Mat. Res. Soc. Symp. Proc., 824 167174 (2004).Google Scholar
43 Jegou, C. Muzeau, B. Broudic, V. Poulesquen, A. Roudil, D. Jorion, F. and Corbel, C. Radiochim. Acta 93, 3542 (2005).10.1524/ract.93.1.35.58294Google Scholar
44 Muzeau, B. Jégou, C., Delaunay, F. Broudic, V. Brevet, A. Catalette, H. Simoni, E. J. All. Comp. (2007); doi:10.1016/j.jallcom.2007.12.054.Google Scholar
45 Newton, T. W. ERDA Critical Review Series; NTIS, Springfield VA, (1975).Google Scholar
46 Baker, F. B. and Newton, T.W. J. Phys. Chem 65 18971899 (1961).Google Scholar
47 Ekeroth, E. and Jonsson, M. J. Nucl. Mat. 322 242248 (2003).Google Scholar
48 Cachoir, C. Carbol, P. Cobos, J. Glatz, J-P, Grambow, B. Lemmens, K. Martinez, A. Menecart, T., Ronchi, C. Rondinella, V. Spahiu, K. Wegen, D. ITU Report SCA 2005/1 (2005).Google Scholar
49 Poinssot, C. Ferry, C. Grambow, B. Kelm, M. Spahiu, K. Martinez, A. Johnson, L. Cera, E. Pablo, J. de, Quinones, J. Wegen, D. Lemmens, K. McMenamin, T. Mat. Res. Symp. Proc. 932 421432 (2006).Google Scholar
50 Christensen, H. Sunder, S. Nuclear Technology 131 102123 (2000).Google Scholar
51 Liu, J. and Neretniks, I. Mat. Res. Soc. Symp. Proc., 353 11791186 (1995).Google Scholar
52 Grauer, R. SKB Technical Report TR 91-39, Stockholm (1991).Google Scholar
53 Wren, J.C. Shoesmith, D.W. Sunder, S. J. Electrochem. Soc. 152, B470–B481 (2005).Google Scholar
54 Jensen, A.Ö., Fors, P. Skarnemark, G. Albinsson, Y. Deliv. 1.5.3, EU-NF-PRO (2006).Google Scholar
55 Icenhour, A. Toth, L. Wham, R. and Brunson, R. Nuclear Technology, 146 206209 (2004).Google Scholar
56 Haschke, J.M. Allen, T.H. Stakebake, J.L. J. Alloys and Compounds, 243 2335 (1996).Google Scholar
57 Korzhavi, P. Vitos, D. Andersson, D. Johansson, B. Nature Mat.erials, 3 224228 (2004).Google Scholar
58 Colmenares, C. A, Prog. Solid State Chem., 15 257364 (1984).10.1016/0079-6786(84)90003-7Google Scholar
59 Imizu, Y. Tanabe, K. Hattori, H. Journal of Catalysis, 56 (1979) 303314.Google Scholar
60 Devoy, J. Haschke, J. Cui, D. Spahiu, K. Mat. Res. Soc. Symp., Series 807 4146 (2003).Google Scholar
61 Spahiu, K., Devoy, J., Cui, D., Lundström, M., Radiochim., Acta 92 597601 (2004).Google Scholar
62 Ekeroth, E. Jonsson, M. Eriksen, T. E. Ljungqvist, K. Kovacs, S. Puigdomenech, I. J. Nucl. Material., 334 3539 (2004).Google Scholar
63 LaVerne, J. A. and Tandon, L. J. Phys. Chem., B 107 1362313628 (2003).Google Scholar
64 Petrik, N. G. Alexandrov, A. B. Vall, A. I. J. Phys. Chem., B 105 59355944 (2001).Google Scholar
65 LaVerne, J. A. and Tandon, L. J. Phys. Chem., B 106 380386 (2002).Google Scholar
66 Stultz, J. Paffet, M. T. Joyce, S. A. J. Phys. Chem. B, 108 23622364 (2004).Google Scholar