Skip to main content Accessibility help
×
Home

The Surface Chemistry of GaAs Atomic Layer Epitaxy

  • J. Randall Creighton (a1) and Barbara A. Banse (a1)

Abstract

In this paper we review three proposed mechanisms for GaAs ALE and review or present data in support or contradiction of these mechanisms. Surface chemistry results clearly demonstrate that TMGa irreversibly chemisorbs on the Ga-rich GaAs(100) surface. The reactive sticking coefficient (RSC) of TMGa on the adsorbate-free Ga-rich GaAs(100) surface was measured to be ∼0.5, conclusively demonstrating that the “selective adsorption” mechanism of ALE is not valid. We describe kinetic evidence for methyl radical desorption in support of the “adsorbate inhibition” mechanism. The methyl radical desorption rates determined by temperature programmed desorption (TPD) demonstrate that desorption is at least a factor of ∼10 faster from the As-rich c(2 × 8)/(2 × 4) surface than from the Garich surface. It is this disparity in CHs desorption rates between the As-rich and Ga-rich surfaces that is largely responsible for GaAs ALE behavior. A gallium alkyl radical (e.g. MMGa) is also observed during TPD and molecular beam experiments, in partial support of the “flux balance” mechanism. Stoichiometry issues of ALE are also discussed. We have discovered that arsine exposures typical of atmospheric pressure and reduced pressure ALE lead to As coverages ≥ 1 ML, which provides the likely solution to the stoichiometry question regarding the arsine cycle.

Copyright

References

Hide All
1. Goodman, C.H.L. and Pessa, M.V., J. Appl. Phys. 60, R65 (1986).
2. (a) Nishizawa, J., Kurabayashi, T., Abe, H. and Nozoe, A., Surface Sci. 185, 249 (1987). (b) J. Nishizawa, T. Kurabayashi, H. Abe and N. Sakurai,.J. Electrochem. Soc. 134, 945 (1987).
3. DenBaars, S.P., Dapkus, P.D., Beyler, C.A., Hariz, A. and Dzurko, K.M., J. Cryst. Growth 23,195 (1988).
4. Tischler, M.A. and Bedair, S.M., Appl. Phys. Lett. 48, 1681 (1986).
5. Ozeki, M., Mochizuki, K., Ohtsuka, N. and Kodama, K., Appl. Phys. Lett. 53, 1509 (1988).
6. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy, (Academic Press, San Diego, 1989), pp. 363367.
7. Kodama, K., Ozeki, M., Mochizuki, K. and Ohtsuka, N., Appl. Phys. Lett. 54, 656 (1989).
8. Yu, M.L., Memmert, U. and Kuech, T.F., Appl. Phys. Lett. 55, 1011 (1989).
9. Creighton, J.R., Lykke, K.R., Shamamian, V.A., Kay, B.D., Appl. Phys. Lett. 57, 279 (1990).
10. Creighton, J.R., Surface Sci. 234, 287 (1990).
11. lshii, H., Ohno, H., Matsuzaki, K. and Hasegawa, H., J. Crystal Growth 95, 132 (1989).
12. Dapkus, P.D., DenBaars, S.P., Chen, Q., Jeong, W.G. and Maa, B.Y., Prog. Crystal. Growth and Charact. 12, 137 (1989).
13. Dapkus, P.D., Maa, B.Y., Chen, Q., Jeong, W.G. and DenBaars, S.P., J. Crystal Growth 107, 73 (1991).
14. Yu, M.L., Memmert, U., Buchan, N.I. and Kuech, T.F., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F.,Dubois, L.H. and Gross, M.E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA 1991) pp. 3746.
15. Yu, M.L., Buchan, N.I., Souda, R. and Kuech, T.F., presented at the 1991 MRS Spring Meeting, Anaheim, CA, 1991 (unpublished).
16. Donnelly, V.M., McCaulley, J.A. and Shul, R.J., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H. and Gross, M.E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA 1991) pp. 1523.
17. Chadi, D.J., J. Vac. Sci. Technol. A5, 834 (1997).
18. Larsen, P.K. and Chadi, D.J., Phys. Rev. B 37, 8282 (1988).
19. Drathen, P., Ranke, W. and Jacobi, K., Surface Sci. 77, L162 (1978).
20. Massies, J., Etienne, P., Dezaly, F. and Linh, N.T., Surface Sci. 99, 121 (1980).
21. Frankel, D.J., Yu, C., Harbison, J.P. and Farrell, H.H., J. Vac. Sci. Technol. B5, 1113 (1987).
22. Pashley, M.D., Haberern, K.W., Friday, W., Woodall, J.M. and Kirchner, P.D., Phys. Rev. Lett. 60, 2176 (1988).
23. Beigelsen, D.K., Bringans, R.D., Northrup, J.E. and Swartz, L.-E., Phys. Rev. B 41, 5701 (1990).
24. Redhead, P.A., Vacuum 12. 203 (1962).
25. Banse, B.A. and Creighton, J.R., to be published. We have found that previous CHs coverage determinations (ref. 10) were too large by a factor of ∼3.
26. Foxon, C.T., Harvey, J.A. and Joyce, B.A., J. Phys. Chem. Solids 34, 1693 (1973).
27. King, D.A. and Wells, M.G., Surface Sci. 29, 454 (1972).
28. Aspnes, D.E., Colas, E., Studna, A.A., Bhat, R., Koza, M.A. and Keramidas, V.G., Phys. Rev. Lett. 61, 2782, (1988).
29. Banse, B.A. and Creighton, J.R., to be published.
30. Aspnes, D.E., presented at the 1991 MRS Spring Meeting, Anaheim, CA, 1991 (unpublished).
31. Larsen, P.K., Neave, J.H., Veen, J.F. van der, Dobson, P.J., Joyce, B.A., Phys. Rev. B 27, 4966 (1983).
32. Sauvage-Simkin, M., Pinchaux, R., Massies, J., Calverie, P., Jedrecy, N., Bonnet, J. and Robinson, I.K., Phys. Rev. Lett. 62, 563 (1989).

Related content

Powered by UNSILO

The Surface Chemistry of GaAs Atomic Layer Epitaxy

  • J. Randall Creighton (a1) and Barbara A. Banse (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.