Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T11:46:19.824Z Has data issue: false hasContentIssue false

Surface and Bulk Photoconductivity of Cd1−xMnxTe

Published online by Cambridge University Press:  26 February 2011

H. Neff
Affiliation:
Departments of Chemistry, North Carolina State University Raleigh, North Carolina 27695-8204
K. Y. Lay
Affiliation:
Materials Engineering, North Carolina State University Raleigh, North Carolina 27695-8204
K. Park
Affiliation:
Physics, North Carolina State University Raleigh, North Carolina 27695-8204
K. J. Bachmann
Affiliation:
Departments of Chemistry, North Carolina State University Raleigh, North Carolina 27695-8204 Materials Engineering, North Carolina State University Raleigh, North Carolina 27695-8204
Get access

Abstract

Double beam photoconductivity experiments are reported for the system Cd1−xMnxTe. The technique allows a separation of surface and bulk contributions, respectively. Bulk effects dominate for manganese rich material and reveal a sharp peak at the band gap energy while surface conductivity reveals a step function type spectral behavior. The growth of a native oxide on the surface causes an increase in the surface recombination velocity and a change from surface to bulk conduction. An oxide related trap state was discovered that is located at approximately 400 meV above the valence band edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example: Bube, R. H., Photoconductivity in Solids, Wiley, New York, 1960.Google Scholar
2. Brillson, L. J., Surface Sci. 69, 62 (1977).Google Scholar
3. Ture, I. E., Russell, G. J., and Woods, J., J. Cryst. Growth 59, 223 (1982).Google Scholar
4. Tanielian, M., Fritzsche, H., Tsai, C. C., and Symbalisty, E., Appl. Phys. Lett. 33, 353 (1978).Google Scholar
5. Humphreys, R. G., Herbert, D. C., Holeman, B. R., Tapster, P., and Bickley, W. P., J. Phys. C: Solid State Phys., 16, 1469 (1983).Google Scholar
6. Lay, K. Y., Giles-Taylor, N. C., Schetzina, J. F., and Bachmann, K. J., J. Electrochem. Soc. 13, 1049 (1986).Google Scholar
7. Neff, H., Lay, K. Y., Bachmann, K. J., and Kotz, R., Luminescence, J., In press.Google Scholar
8. Lange, P., Neff, H., Fearheiley, M., and Bachmann, K. J., J. Electron. Mat. 14, 667 (1985).Google Scholar
9. Lay, K. Y., Neff, H., and Bachmann, K. J., Phys. Stat. Sol. (a) 92, 567 (1985).Google Scholar
10. Yoshi, N. V., Martin, J., and Quintero, P., Appl. Phys. Lett. 39, 79 (1981) and references cited in this paper.Google Scholar
11. Yamada, K., Lindström, M., Heleskivi, J. and Galazka, R. R., Jap. J. Appl. Phys. 19, Supplement 19–3. 361 (1980).Google Scholar
12. Stankiewicz, J. and Aray, A., J. Appl. Phys. 53, 3117 (1982).Google Scholar
13. Su, M. S. and Neff, H., unpublished results.Google Scholar
14. Neff, H., Lay, K. Y., Lange, P., Lucovsky, G., and Bachmann, K. J., J. Appl. Phys. 60, 151 (1986).Google Scholar