Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T04:44:48.109Z Has data issue: false hasContentIssue false

Suppression of NiSi-to-NiSi2 Transition Using Very Short-time RTA Silicidation

Published online by Cambridge University Press:  01 February 2011

D. Ma
Affiliation:
Institute of Materials Research and Engineering, Research Link 3, Singapore 117602 E-mail: d-ma@imre.org.sg
D. Z. Chi
Affiliation:
Institute of Materials Research and Engineering, Research Link 3, Singapore 117602 E-mail: d-ma@imre.org.sg
W. D. Wang
Affiliation:
Institute of Materials Research and Engineering, Research Link 3, Singapore 117602 E-mail: d-ma@imre.org.sg
A. S. W. Wong
Affiliation:
Institute of Materials Research and Engineering, Research Link 3, Singapore 117602 E-mail: d-ma@imre.org.sg
S. J. Chua
Affiliation:
Institute of Materials Research and Engineering, Research Link 3, Singapore 117602 E-mail: d-ma@imre.org.sg
Get access

Abstract

Thermal stability of NiSi is a major concern for its application in sub-0.1 μm CMOS devices, due to the transition of NiSi to the high-resistivity disilicide (NiSi2) at elevated temperatures. In this study, we have investigated the effect of RTA silicidation duration on NiSito-NiSi2 transition during Ni-silicidation reaction of Ni film (20-25 nm thick) on (100)Si. It was found that the NiSi-NiSi2 transition temperature was increased remarkably from 700 to > 800 °C by reducing the RTA time from 60 to 1 s. Agglomeration of silicides films was also found to besuppressed by short-time annealing. A temperature-time transformation (TTT) diagram has been constructed, which demonstrates the time-dependency of NiSi-NiSi2 transition. Based on the classical theory on phase transformation kinetics, a concept of induction time was employed to elucidate the key roles of transformation time and film thickness in determining the NiSi-NiSi2 transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohguro, T., Nakajima, S., Koike, M., Morimoto, T., Nishiyama, A., Ushiku, Y., Yoshitomi, T., Ono, M., Saito, M., and Iwai, H., IEEE Trans. Electron Devices 41, 2305 (1994).Google Scholar
2. Qin, M., Poon, M. C., and Ho, C. H., J. Electrochem. Soc. 148, G271 (2001).Google Scholar
3. Chi, D. Z., Mangelinck, D., Zuruzi, A. S., Wong, A. S. W., and Lahiri, S. K., J. Electron. Mater. 30, 1483 (2001).Google Scholar
4. Mangelinck, D., Dai, J.Y., Pan, J.S., and Lahiri, S.K., Appl. Phys. Lett. 75, 1736 (1999).Google Scholar
5. Deng, F., Johnson, R. A., Asbeck, P. M., and Lau, S. S., J. Appl. Phys. 81, 8047 (1997).Google Scholar
6. Mangelinck, D., Dai, J. Y., Lahiri, S. K., Ho, C. S. and Osipowicz, T., MRS Spring Meeting, Warrendale, PA: MRS, 1999.Google Scholar
7. Nolan, T. P., Sinclair, R., Beyers, R., J. Appl. Phys. 71, 720 (1992).Google Scholar
8. d'Heurle, F. M., J. Mater. Res. 3, 167 (1998).Google Scholar
9. Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, 1975.Google Scholar
10. Porter, D. A., and Easterling, K. E., Phase Transformations in Metals and Alloys, Chapman & Hall, London, 2nd ed., 1992.Google Scholar
11. Li, J., Mayer, J. W., and Tu, K. N., Phys. Rew. B45, 5683(1992).Google Scholar
12. Teodorescu, V., Nistor, L., Bender, H., Steegen, A., Lauwers, A., Maex, K., and Landuyt, J. V., J. Appl. Phys. 90, 167(2001).Google Scholar
13. Julies, B. A., Knoesen, D., Pretorius, R., and Adams, D., Thin Solid film 347, 201(1999).Google Scholar
14. kashchiev, D., Nucleation Basic Theory with Applications, Butterworth-Heinemann, Oxford, 2000.Google Scholar
15. Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing, Reading, Mass., 1978.Google Scholar
16. Lu, K. and Li, Y., Phys. Rev. Lett. 80, 4474(1998).Google Scholar
17. Liu, J. F., Feng, J. Y. and Zhu, J., Appl. Phys. Lett. 80, 270(2002).Google Scholar