Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T11:47:18.230Z Has data issue: false hasContentIssue false

Supersonic-Free-Jet CVD Growth of Dy-doped Silicon Films for 1.3 Micron LED

Published online by Cambridge University Press:  01 February 2011

Shinji Kawai
Affiliation:
Department of Materials Science and Engineering, Kyushu University 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Koji Matsutake
Affiliation:
Department of Materials Science and Engineering, Kyushu University 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Fumiya Watanabe
Affiliation:
Department of Materials Science and Engineering, Kyushu University 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Teruaki Motooka
Affiliation:
Department of Materials Science and Engineering, Kyushu University 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Get access

Abstract

We have investigated epitaxial growth of dysprosium (Dy)-doped silicon (Si:Dy) thin films for fabrication of 1.3 μm light-emitting diodes (LEDs) using supersonic-free-jet CVD. The 700-nm-thick Si:Dy films are grown on p+-type, p-type, and n-type Si(100) at a substrate temperature of 800° for 90 min. The doping concentrations of Dy atoms range from 1018 to 1019 cm-3 at the surface region of the film measured by the secondary ion mass spectrometry (SIMS). The particles with average size ~200 nm form at the surface of the film and it suggests the possibility to form Si-nanoparticle (Si quantum dots) from atomic force microscopy (AFM) observation. From the electrical measurements at room temperature, the metal (Al)-Si:Dy junction is a Schottky contact and Dy introduces donor states in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Polman, A., Snoeks, E., van den Hoven, G. N., Brongersma, M. L., Serna, R., Shin, J. H., Kik, P., and Radius, E., Nucl. Instrum. Methods Phys. Res. B 106, 393 (1995).Google Scholar
2. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
3. Soref, R., MRS Bull. 23 (4), 20 (1998).Google Scholar
4. Fitzgerald, E. A., and Kimerling, L. C., MRS Bull. 23 (4), 39 (1998).Google Scholar
5. Kik, P. G., and Polman, A., MRS Bull. 23 (4), 48 (1998).Google Scholar
6. Ennen, H., Pomrenke, G., Axmann, A., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
7. Franze, G., Priolo, F., Coffa, S., Polman, A., and Carnera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
8. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
9. Hewak, D. W., Samson, B. N., Medeiros Neto, J. A., Laming, R. I., and Payne, D. N., Electron. Lett. 30, 968 (1994).Google Scholar
10. Samson, B. N., Medeiros Neto, J. A., Laming, R. I., and Payne, D. N., Electron. Lett. 30, 1617 (1994).Google Scholar
11. Wei, K., Machewirth, D. P., Wenzel, J., Snitzer, E., and Sigel, G. H. Jr, Opt. Lett. 19, 904 (1994).Google Scholar
12. Tanabe, S., Hanada, T., Watanabe, M., Hayashi, T., and Soga, N., J. Am. Ceram. Soc. 78, 2917 (1995).Google Scholar
13. Page, R. H., Schaffers, K. I., Payne, S. A., and Krupke, W. F., Wavelight, J. Technol. 15, 786 (1997).Google Scholar
14. Motooka, T., Abe, H., Fons, P., and Tokuyama, T., Appl. Phys. Lett. 63, 3473 (1993).Google Scholar
15. Pietsch, W., Aramaki, T., and Motooka, T., Jpn. J. Appl. Phys., Part1 35, 6566 (1996).Google Scholar
16. Ikoma, Y., Endo, T., Watanabe, F., and Motooka, T., J. Vac. Sci. Technol. A 16, 763 (1998).Google Scholar
17. Ikoma, Y., Endo, T., Watanabe, F., and Motooka, T., Appl. Phys. Lett. 75, 3977 (1999).Google Scholar
18. Watanabe, F., Ohmura, K., Kawai, S., and Motooka, T., J. Cryst. Growth 222, 1 (2001).Google Scholar