Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-30T03:29:30.027Z Has data issue: false hasContentIssue false

Supersonic Cluster Beam Synthesis of Nanophase Materials

Published online by Cambridge University Press:  21 February 2011

P. Milanil
Affiliation:
INFM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
S. Iannotta
Affiliation:
CEFSA-CNR, 38050 Povo di Trento, Italy
F. Biasioli
Affiliation:
CEFSA-CNR, 38050 Povo di Trento, Italy
P. Piseri
Affiliation:
INFM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
E. Barborini
Affiliation:
INFM-Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, 20133 Milano, Italy
Get access

Abstract

We present the characterization of supersonic cluster beam deposition as a viable technique for the synthesis of nanostructured materials. Stable and intense cluster beams can be obtained with a pulsed microplasma cluster source. This technique has been applied to produce TiNi nanostructured thin films on various substrates at room temperature. The morphology and the structure of the film are strongly influenced by the precursor clusters. Films characterized by crystallite sizes of a few tens of nanometers can be grown without recrystallization by thermal annealing. The stoichiometry of the original TiNi alloy is maintained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Milani, P., lannotta, S., Cluster Beam Synthesis of Nanostructured Materials, Springer Verlag, Berlin, (1999)Google Scholar
2. Grumon, D.S., Litton, J.A., Zhoo, Z., Pence, T.J., J. Phys. IV, Colloque C–8, 665 (1995)Google Scholar
3. Gisser, K.R.C., Busch, J.D., Johnson, A.D., Ellis, A.B., Appl. Phys. Lett. 61, 1632 (1992)Google Scholar
4. Busch, J.D., Johnson, A.D., Lee, C.H., Stevenson, D.A., J. Appl. Phys. 68, 6224 (1990)Google Scholar
5.see, for example: J. Phys IV. (Paris), Colloque C-8 (1995)Google Scholar
6.see, for example: J. Phys IV. (Paris), Colloque C-4 (1991)Google Scholar
7. Su, Q., Hua, S.Z., Wuttig, M., Trans. Mat. Res. Soc. Jpn. 18B, 1057 (1994)Google Scholar
8. Ikuta, K., Fujishiro, H., Hayashi, M., Matsuura, T., Proc. 1st Int. Conf. on Shape Memory and Superelastic Technologies, Pacific Grove, Ca, (1994)Google Scholar
9. Ishida, A., Takei, A., Sato, M., Miyazaki, S., Mat. Res. Soc. Symp. Proc. Vol. 360, 381 (1995)Google Scholar
10. Bendaham, M., Canet, P., Seguin, J.-L., Carchano, H., Mater. Sci. Eng. B 34, 112 (1995)Google Scholar
11. Shi, J.D., et al., Mat. Res. Symp. Proc. vol. 400, 221 (1996)Google Scholar
12. Barborini, E., Piseri, P., Milani, P., J. Phys. D: Appl. Phys. 10, L105 (1999)Google Scholar
13. Piseri, P., Milani, P. lannotta, S., Int. J. Mass Spectrom. Ion Proc. 135, 23 (1996)Google Scholar
14. Soederlund, J., et al. Phys. Rev. Lett. 80, 2386 (1998)Google Scholar
15. Fuchs, G., et al., Phys. Rev. B 44, 3926 (1991)Google Scholar
16. Barborini, E. et al., Nanostruct. Mater. 10, 1023 (1998)Google Scholar