Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T15:37:53.314Z Has data issue: false hasContentIssue false

Superplastic Properties of an Aluminum-Based Alloy After Equal-Channel Angular Pressing

Published online by Cambridge University Press:  10 February 2011

Jingtao Wang
Affiliation:
Department of Metallurgy, Xi'an University of Architecture and Technology, Xi'an 710055, P.R. China
Patrick B. Berbon
Affiliation:
Structural Metals Division, Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360, U.S.A.
Yuzhong Xu
Affiliation:
Department of Metallurgy, Xi'an University of Architecture and Technology, Xi'an 710055, P.R. China
Lizhong Wang
Affiliation:
Department of Metallurgy, Xi'an University of Architecture and Technology, Xi'an 710055, P.R. China
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453, U.S.A.langdon@usc.edu
Get access

Abstract

It is now recognized that superplasticity requires a very small grain size, typically > 10 μm. A further reduction in grain size, to the submicrometer or nanometer level, offers the potential for attaining superplasticity at both faster strain rates and lower temperatures. This paper reports an investigation of the microstructure and tensile behavior of an Al-3% Mg-0.5% Zr alloy after processing by equal-channel angular pressing to an equivalent true strain of ∼8.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Langdon, T.G., Metall. Trans. 13A, 689 (1982).10.1007/BF02642383Google Scholar
2. Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E. and Kopylov, V.I., Russian Metall. 1, 99 (1981).Google Scholar
3. Smirnova, N.A., Levit, V.I., Pilyugin, V.I., Kuznetsov, R.I., Davydova, L.S. and Sazonova, V.A., Fiz. Metall. Metalloved. 61, 1170 (1986).Google Scholar
4. Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z. and Langdon, T.G., Acta Mater. 44, 2973 (1996).10.1016/1359-6454(95)00395-9Google Scholar
5. Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z. and Langdon, T.G., Acta Mater. 44, 4619 (1996).10.1016/1359-6454(96)00105-XGoogle Scholar
6. Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Metall. Trans. 29A, 2503 (1998).10.1007/s11661-998-0222-yGoogle Scholar
7. Hasegawa, H., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T.G., Mater. Sci. Eng. A265, 188 (1999).10.1016/S0921-5093(98)01136-8Google Scholar
8. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Acta Mater. 45, 4751 (1997).10.1016/S1359-6454(97)00120-1Google Scholar
9. Valiev, R.Z., Salimonenko, D.A., Tsenev, N.K., Berbon, P.B. and Langdon, T.G., Scripta Mater. 37, 1945 (1997).10.1016/S1359-6462(97)00387-4Google Scholar
10. Furukawa, M., Berbon, P.B., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Metall. Mater. Trans. 29A, 169 (1998).10.1007/s11661-998-0170-6Google Scholar
11. Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Phil. Mag. Lett. 78, 313 (1998).10.1080/095008398177896Google Scholar
12. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Mater. Sci. Eng. A 257, 328 (1998).10.1016/S0921-5093(98)00750-3Google Scholar
13. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T.G., Scripta Mater. 36, 143 (1996).10.1016/1359-6462(96)00107-8Google Scholar