Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T18:03:11.992Z Has data issue: false hasContentIssue false

Superfluid Density in Ultrathin YBCO Films

Published online by Cambridge University Press:  18 March 2011

Lyuba A. Delimova
Affiliation:
Ioffe Institute RAS, 26 Politekhnicheskaya, St.Petersburg 194021, Russia
Igor V. Grekhov
Affiliation:
Ioffe Institute RAS, 26 Politekhnicheskaya, St.Petersburg 194021, Russia
Ivan A. Liniichuk
Affiliation:
Ioffe Institute RAS, 26 Politekhnicheskaya, St.Petersburg 194021, Russia
Ivan A. Veselovsky
Affiliation:
Ioffe Institute RAS, 26 Politekhnicheskaya, St.Petersburg 194021, Russia
Konstantin B. Traito
Affiliation:
Ioffe Institute RAS, 26 Politekhnicheskaya, St.Petersburg 194021, Russia
Erkki Lahderanta
Affiliation:
Wihuri Physical Laboratory University of Turku, FIN – 20014 Turku, Finland
Get access

Abstract

We studied the transition of 8 nm-thick YBCO films deposited with and without YBaCuNbO buffer from the superconducting to resistive state due to the temperature or transport current increase. For both film types, the current –voltage characteristics and resistive transition followed the Kosterlitz-Thouless transition model. The superfluid densities were found from the Kosterlitz-Thouless transition temperature TKT to be about 3% and 1.3% of the total carrier density in YBCO with and without buffer, respectively. We believe that the low superfluid densities indicate the presence of weak links in the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mannhart, J., Schlom, D.G., Bednorz, J.G. and Muller, K.A., Phys.Rev.Lett., 67, 20992101 (1991).Google Scholar
2. Xi, X. X., Doughtly, C., Walkenhorst, A., Kwon, C., Li, Q. and Venkatesan, T., Phys.Rev.Lett., 68, 12401243 (1992).Google Scholar
3. Cieplak, M.Z., Guha, S., Vadlamannati, S., Giebultowicz, T. and Lindenfeld, P. Phys.Rev. B17, 1287612886 (1994-2001).Google Scholar
4. Vadlamannati, S., Li, Q., Venkatesan, T., McLean, W.L., and Lindenfeld, P., Phys.Rev.B, 44, 70947097 (1991-2001).Google Scholar
5. Matsuda, Y., Komiyama, S., Terashima, T., Shimura, K., and Bando, Y., Phys.Rev.Lett, 69, 32283230 (1992).Google Scholar
6. Kim, B. J., and Minhagen, P., Phys. Rev. B, 60, R15 043–R15 046 (1999-II).Google Scholar
7. Park, W. K., and Khim, Z.G., Phys Rev. B, 61, 15301537, (2000-II).Google Scholar
8. Grekhov, I., Baydakova, M., Borevich, V., Davydov, V., Delimova, L., Liniichuk, I., and Lyublinsky, A., Physica C, 276, 1824, (1997).Google Scholar
9. Kosterlitz, J.M., and Thouless, D.J., J.Phys.C:Solid State Phys., 6, 11811203 (1973).Google Scholar
10. Kadin, A.M., Epstein, E., and Goldman, A.M., Phys. Rev. B, 27, 66916702 (1983).Google Scholar
11. Matsuda, Y., Komiyama, S., Onogi, T., Terashima, T., Shimura, K., and Bando, Y., Phys.Rev.B, 48, 1049810502 (1993-II).Google Scholar
12. Fiory, A.T., Hebard, A.F., Eick, R.H., Mankievich, P.M., Howard, R.E., and O'Malley, M.L., Phys.Rev.lett., 65, 34413444 (1990).Google Scholar
13. Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R., and Zhang, K., Phys.Rev.Lett., 70, 39994002 (1993).Google Scholar
14. Grekhov, I., Delimova, L., Liniichuk, I., Veselovsky, I., Titkov, A., Dunaevsky, M., Sakharov, V., Physica C 324, 3946 (1999).Google Scholar
15. Blinov, E.V., Laiho, R., Lahderanta, E., Lyublinsky, A.G., Traito, K.B., Phys.Rev. B 53, 7981 (1996).Google Scholar