Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T04:46:14.520Z Has data issue: false hasContentIssue false

Superconductivity and Tunneling Spectroscopy in Granular and Homogeneous Quench Condensed thin Films

Published online by Cambridge University Press:  28 February 2011

J. M. Valles Jr.
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07074
R. C. Dynes
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07074
Get access

Abstract

Quench-condensed films of simple superconductors can be deposited with a morphology which is either granular (grain sizes on the scale of tens of angstroms) or homogeneous. Transport and tunneling studies of the normal and superconducting states of these films as a function of sheet resistance have revealed profound differences between them. In uniform films Tc. and the energy gap decrease continuously with decreasing film thickness. Superconductivity is destroyed by the reduction of the amplitude of the order parameter. In granular films, the grains are sufficiently large to support superconductivity in each grain. Long range phase coherence is destroyed by intergrain phase coherence breaking.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dynes, R. C., Garno, J. P. and Rowell, J. M., Phys. Rev. Lett. 40, 479 (1978).Google Scholar
[2] White, Alice E., Dynes, R. C. and Garno, J. P., Phys. Rev. B29, 3694 (1984).Google Scholar
[3] Bergmann, Gerd, Phys. Rev. Lett. 48, 1046 (1982).Google Scholar
[4] Imry, Y. and Ovadyahu, Z., Phys. Rev. Lett. 49, 841 (1982); A. E. White, R. C. Dynes and J. P. Garno, Phys. Rev. B31, 1174 (1985); J. M. Valles, Jr., R. C. Dynes and J. P. Garno, Phys. Rev. B40, 7500 (1989).Google Scholar
[5] Strongin, M., Thompson, R. S., Kammerer, O. F., and Crow, J. E., Phys. Rev. B2, 1078 (1971).Google Scholar
[6] Dynes, R. C., White, A. E., Graybeal, J. M., and Garno, J. P., Phys. Rev. Lett. 57, 2195 (1986).Google Scholar
[7] White, Alice E., Dynes, R. C. and Garno, J. P., Phys. Rev. B33, 49 (1986).Google Scholar
[8] Jaegar, H. M., Haviland, D. B., Goldman, A. M. and Orr, B. G., Phys. Rev. B34, 4920 (1986), and references therein.Google Scholar
[9] Valles, J. M. Jr., Dynes, R. C. and Garno, J. P., Phys. Rev. B40, 6680 (1989).Google Scholar
[10] Valles, J. M. Jr., Dynes, R. C. and Carno, J. P., (to be published).Google Scholar
[11] Haviland, D. B., Liu, Y. and Goldman, A. M., Phys. Rev. Lett. 62, 2180 (1989).Google Scholar
[12] Altshuler, B. L., Aronov, A. G. and Zuzin, A. Yu., Zh. Eksp. Teor. Fiz. 86, 709 (1984) [Sov. Phys.-JETP 59, 415 (1984)].Google Scholar
[13] Fisher, M. P. A., Grinstein, G., and Girvin, S. M., Phys. Rev. Lett. 64, 587 (1990).Google Scholar