Skip to main content Accessibility help
×
Home

SUPERCONDUCTING PROPERTIES OF TERNARY GRAPHITE INTERCALATION COMPOUNDS

  • A. Chaiken (a1), G. Roth (a1), T. Enoki (a1), N. C. Yeh (a1), M. S. Dresselhaus (a1) and P. Tedrow (a2)...

Abstract

Graphite intercalation compounds (GIC's) are metal-semimetal superlattices which exhibit crystalline order, and have atomically perfect interfaces between the layers of the constituent species. From the standpoint of superconductivity, the KHg-GIC's are particularly interesting. The preparation and properties of these compounds are described, along with a series of recent experiments with hydrogen doping which have helped to elucidate their electronic properties. A density of states model suggested by the results of the hydrogen–doping experiments is presented and used to explain the variation of the superconducting transition temperature in these materials.

Copyright

References

Hide All
[1] Klemm, R. A., Luther, A., and Beasley, M. R., Phys. Rev. B12, 877 (1975).
[2] Gamble, F. R., DiSalvo, F. J., Klemm, R. A., and Geballe, T. H., Science 70, 568 (1970).
[31 S. T Ruggiero, Barbee, T. W., and Beasley, M. R., Phys. Rev. B26, 4894 (1982).
[4] Lowe, W. P. and Geballe, T. H., Phys. Rev. B29, 4961 (1984).
[5] Dresselhaus, M. S. and Dresselhaus, G., Advances in Physics 30, 139 (1981).
[6] M. El Makrini, Lagrange, P., D. Gu6rard, and A. H6rold, Carbon 11, 211 (1980).
[7] lye, Y. and Tanuma, S., Phys. Rev. B 25, 4583 (1982).
[8] Timp, G., Chieu, T.C., Dresselhaus, P.D., and Dresselhaus, G., Phys. Rev. B 29, 6940 (1984).
[9] Werthamer, N. R., Phys. Rev. 132, 2440 (1963).
[10] Bardeen, J., Cooper, L. N., and Schrieffer, J. R., Phys. Rev. 108, 1175 (1957).
[11] Roth, G., Yeh, N.C., Chaiken, A., Dresselhaus, G., and Tedrow, P., Extended Abstracts of the Mat. Res. Soc., Symp. on Intercalated Graphite, 149 (1984).
[12] Woollam, J. A., Somoano, R. B., and P. O'Connor, Phys. Rev. Lett. 32, 712 (1974).
[13] Stritzker, B. and Waihl, H., Top. in Appl. Phys.29, edited by Alefeld, G. and J. V5lkl (Springer, Heidelberg, 1978), 243.
[14] Kaneiwa, S., Kobayashi, M., and Tsujikawa, I., J. Phys. Soc. Jpn. 51, 2375 (1982).
[15] Lagrange, P. and A. H6rold, Carbon 16, 235 (1978).
[16] Roth, G., Chaiken, A., Enoki, T., Yeh, N. C., Dresselhaus, G., and Tedrow, P., Phys. Rev. B 32, 533 (1985).
[17] Preil, M.E., Grunes, L.A., Ritsko, J.J., and Fischer, J.E., Phys. Rev. B 30, 5852 (1984).
[18] Enoki, T., Yeh, N.C., Chen, S. T., and Dresselhaus, G., Phys. Rev. B 33, xxx (1985).
[19] Enoki, T., Inokuchi, H., and Sano, M., Chem. Phys. Lett. 86, 285 (1982).
[20] Conard, J., Estrade-Szwarckopf, H., Lauginie, P., M. El Makrini, Lagrange, P., D. Gu~rard, Physica 105B, 290 (1981).
[21] Roberts, B.W., Physical, J. and Chemical Reference Data 5, 661 (1976).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed