Skip to main content Accessibility help

Superadditivity in the Implantation of Molecular Ions

  • G. F. Cerofolini (a1), L. Meda (a2) and C. Volpones (a2)


This paper deals with the implantation of molecular ions in silicon. The ‘molecular’ effect, i.e. the increase of the displacement yield compared with the sum of the atomic yields, is weak for light molecules (e.g., H2) and for heavy diatomic molecules (e.g., Sb2 and Bi2), but, for instance, it is strong for C6H6 at energy per atomic mass of the order of 1 keV/amu. Binary collision calculations are used to give a pictorial view of the phenomena occurring along the ion path, and to predict superadditivity and damage columnarity. The increase of pressure and temperature to extreme conditions by implantation of molecular ions is discussed.



Hide All
1. Cerofolini, G.F. and Meda, L., Phys. Rev. B 36, 5131 (1987).
2. Cerofolini, G.F., Meda, L. and Volpones, C., J. Appl. Phys. 63, 4911 (1988).
3. Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 42, 698 (1983); J. Appl. Phys. 57, 1795 (1985).
4. Averback, R.S., presented at the Workshop on the Effects of Recoil Spectrum and Nuclear Transmutation on the Evolution of the Microstructure, Lugano, March 1988.
5. Mueller, H., Ryssel, H. and Ruge, I., in: Proc. 2nd Intl. Conf. Ion Implantation, Ruge, I. and Graul, J. eds., Springer-Verlag, Berlin, (1971) p. 85.
6. Vandervost, W., Houghton, D.C., Shepherd, F.R., Swanson, M.L., Plattner, H.L. and Carpenter, G.J.C., Can. J. Phys. 63, 863 (1985).
7. Brotherton, S.D., Gowers, J.P., Young, N.D., Clegg, J.B. and Ayres, J.R., J. Appl. Phys. 60, 3567 (1986).
8. Mitchell, J.B., Davies, J.A., Howe, L.M., Walker, R.S., Winterbon, K.B., Foti, G. and Moore, J.A., in: Ion Implantation in Semiconductors, Namba, S. ed., Plenum Press, New York, NY (1975) p. 493.
9. Thompson, D.A., Golanski, A., Haugen, K.H., Stefanovic, D.V., Carter, G. and Christoulides, C.E., Radiat. Eff. 52, 69 (1980).
10. Thompson, D.A., Walker, R.S. and Davies, J.A., Radiat. Eff. 32, 135 (1977).
11. Grob, A., Grob, J.J. and Golanski, A., Nucl. Instrum. Meth.B 19/20, 55 (1987).
12. Davies, J.A., Foti, G., Howe, L.M., Mitchell, J.B. and Winterbon, K.B., Phys. Rev. Lett. 34, 1441 (1975).
13. Fano, U., Ann. Rev. Nucl. Sci. 13, 1 (1963).
14. Robinson, M.T. and Torrens, I.M., Phys. Rev. B 9, 5008 (1974).
15. Assuming, as done in ref. [12], that y observed in the implantation of carbon at 8.8 keV is exclusively due to v-i, allows us to determine the values of binding energy U b and quit energy E q required by MARLOWE to describe the formation of the v-i pair. These values are U b ≃ 40 eV and E q ≃ 40 eV.
16. Howe, L.M., Rainville, M.H., Haugen, H.K. and Thompson, D.A., Nucl. Instrum. Meth. 170, 419 (1980).
17. Howe, L.M. and Rainville, M.H., Nucl. Instrum. Meth. B 19/20, 61 (1987).
18. Gibbons, J.F., Johnson, W.S. and Mylroie, S.W., Projected Range Statistics, Dowden, Hutchinson & Ross, Stroudsburg, PA (1975).
19. No latent heat has been considered for this estimate; it existence and value do not modify the following considerations.
20. Jeanloz, R., Nature 325, 303 (1987).
21. Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, John Wiley & Sons, New York (1980) p. 1020.
22. Cerofolini, G.F. and Meda, L., Italian Patent No. 20321A/87 (April 1987).

Superadditivity in the Implantation of Molecular Ions

  • G. F. Cerofolini (a1), L. Meda (a2) and C. Volpones (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed