Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T04:04:27.929Z Has data issue: false hasContentIssue false

Sugar Coated Semiconductors: Model Surfaces to Study Biological Adhesion

Published online by Cambridge University Press:  21 February 2011

Mark Mastandrea
Affiliation:
The Department of Chemistry, University of California, Berkeley, CA 94720 The Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Mark D. Bednarski
Affiliation:
The Department of Chemistry, University of California, Berkeley, CA 94720 The Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Certain molecules when placed in contact with a surface can bind to form well-ordered two dimensional arrays. This process is called molecular selfassembly (MSA), and it is emerging as an important method to control the interactions between a surface and its environment (interfacial properties). Molecular self-assembly uses the fundamental forces between molecules (Van der Waals interactions, hydrophobic effects and hydrogen bonding) to form highly ordered macromolecular systems. This process has been used to synthesize molecular films on a variety of surfaces including glass, gold, alumina, platinum, and silicon. The objective of this paper is to describe the application of molecular self-assembled films to the study of biological systems. Specifically, we will describe methods to synthesize and characterize surfaces that contain molecules that bind to bacteria and viruses. We will also evaluate the use of surface science techniques to characterize the physical and chemical properties of these surfaces, and we will attempt to correlate these properties with the adhesion of biological molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. National Science Foundation Predoctoral Fellow.Google Scholar
2. American Cancer Society Junior Faculty Awardee 1990–1993, Grant No. JFRA-261.Google Scholar
3. Whitesides, G.M. and Laibinis, P.E., Langmuir 6. 8796 (1990).Google Scholar
4. Bain, C.D. and Whitesides, G.M., Adv. Mater. 4, 110116 (1989).Google Scholar
5. Whitesides, G.M. and Ferguson, G.S., Chemtracts l, 171187 (1988).Google Scholar
6. Swalen, J.D., Allara, D.L., Andrade, J.D., Chandross, E.A., Garoff, S., Israelachvili, J., McCarthy, T.J., Murray, R., Pease, R.F., Rabolt, J.F., Wynne, K.J., and Yu, H., Langmuir 3, 932950 (1987).Google Scholar
7. Netzer, L., Iscovici, R., and Sagiv, J., Thin Solid Films 100, 6776 (1983).Google Scholar
8. Netzer, L., Iscovici, R., and Sagiv, J., Thin Solid Films 99, 235241 (1982).Google Scholar
9. Ariga, K. and Okahata, Y., J. Am. Chem. Soc. 111, 56185622 (1989).Google Scholar
10. Balachander, N. and Sukenik, C.N., Tetrahedron Lett. 29, 55935594 (1988).Google Scholar
11. Sagiv, J., J. Am. Chem. Soc..102, 92 (1980).Google Scholar
12. Sagiv, J., Isr. J. Chem., 18, 346353 (1979).Google Scholar
13. Wasserman, S.R., Tao, Y.-T., and Whitesides, G.M., Langmuir 5, 1074 (1989).Google Scholar
14. Wasserman, S.R., Whitesides, G.M., Tidswell, I.M., Ocko, B.M., Pershan, P.S., and Axe, J.D., J. Am. Chem. Soc. 111, 5852 (1989).Google Scholar
15. Tillman, N., Ulman, A., Schildkraut, J.S., and Penner, T.L., J. Am. Chem. Soc. 110, 61366144 (1988).Google Scholar
16. Maoz, R. and Sagiv, J., Langmuir 3, 10451051 (1987).Google Scholar
17. Hailer, I., J. Am. Chem. Soc. 100, 80508055 (1978).Google Scholar
18. Bain, C.D., Troughton, E.B., Tao, Y.-T., Evall, J., Whitesides, G.M., and Nuzzo, R.G., J. Am. Chem. Soc. 111, 321335 (1989).Google Scholar
19. Rubinstein, I., Steinberg, S., Tor, Y., Shanzer, A., and Sagiv, J., Nature 332, 426 (1988).Google Scholar
20. Nuzzo, R.G., Fusco, F.A., and Allara, D.L., J. Am. Chem. Soc. 109, 23582368 (1987).Google Scholar
21. Diem, T., Czajka, B., Weber, B., and Regen, S.L., J. Am. Chem. Soc. 108, 60946095 (1986)Google Scholar
22. Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc. 105, 44814483 (1983).Google Scholar
23. Holmes-Farley, S.R., Langmuir 4, 766774 (1988).Google Scholar
24. Allara, D.L. and Nuzzo, R.G., Langmuir 1, 4552 (1985).Google Scholar
25. Ogawa, H., Chihara, T., and Taya, K., J. Am. Chem. Soc. 107, 13651369 (1985).Google Scholar
26. Gun, J., Iscovici, R., and Sagiv, J., J. Colloid Interface Sci. 101, 201213 (1984).Google Scholar
27. Soriaga, M.P. and Hubbard, A.T., J. Am. Chem. Soc. 104, 39373945 (1982).Google Scholar
28. Nuzzo, R.G., Dubois, L.H., and Allara, D.L., J. Am. Chem. Soc. 112, 558569 (1990).Google Scholar
29. Dubois, L.H., Zegarski, B.R., and Nuzzo, R.G., J. Am. Chem. Soc. 112, 570579 (1990).Google Scholar
30. Bain, C.D. and Whitesides, G.M., J. Phys. Chem. 23, 16701673 (1989).Google Scholar
31. Bain, C.D. and Whitesides, G.M., J. Am. Chem. Soc. 110, 58975898 (1988).Google Scholar
32. Bain, C.D. and Whitesides, G.M., J. Am. Chem. Soc. 110, 36653666 (1988).Google Scholar
33. Bain, C.D. and Whitesides, G.M., Science 240, 6263 (1988).Google Scholar
34. Troughton, E.B., Bain, C.D., Whitesides, G.M., Nuzzo, R.G., Allara, D.L., and Porter, M.D., Langmuir 4, 365385 (1988).Google Scholar
35. Rubinstein, I., Steinberg, S., Tor, Y., Shanzer, A., and Sagiv, J., Nature 332, 426429 (1988).Google Scholar
36. Strong, L. and Whitesides, G.M., Langmuir 4, 546558 (1988).Google Scholar
37. Bain, C.D. and Whitesides, G.M., J. Am. Chem. Soc. 110, 65606561 (1988).Google Scholar
38. Porter, M.D., Bright, T.B., Allara, D.L., and Chidsey, C.E.D., J. Am. Chem. Soc. 109, 35593568 (1987).Google Scholar
39. Nuzzo, R.G., Zegarski, B.R., and Dubois, L.H., J. Am. Chem. Soc. 109, 733740 (1987)Google Scholar
40. Finklea, H.O., Robinson, L.R., Blackburn, A., Richter, B., Allara, D., and Bright, T., Langmuir 2, 239244 (1986).Google Scholar
41. Li, T.-T. and Weaver, M.J., J. Am. Chem. Soc. 106, 61076108 (1984).Google Scholar
42. Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc. 105, 44814483 (1983).Google Scholar
43. Tidswell, I.M., Ocko, B.M., Pershan, P.S., Wasserman, S.R., Whitesides, G.M., and Axe, J.D., Phys. Rev. B 41, 11111128 (1990).Google Scholar
44. Maoz, R. and Sagiv, J., Langmuir 3, 10451051 (1987).Google Scholar
45. Gun, J. and Sagiv, J., J. Colloid Interface Sci. 112, 457472 (1986).Google Scholar
46. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
47. Cohen, S.R., Naaman, R., and Sagiv, J., J. Phys. Chem. 90, 30543056 (1986).Google Scholar
48. Maoz, R. and Sagiv, J., Thin Solid Films 132, 135151 (1985).Google Scholar
49. DeGennes, P.G., Rev. Mod. Phys. 51, 827 (1985).Google Scholar
50. Israelachvili, J.N., Intermolecular and Surface Forces (Academic Press, London, 1985).Google Scholar
51. Fowkes, F.M. (ed.), Contact Angles, Wettability and Adhesion, Advances in Chemistry 43, American Chemical Society (Washington, DC, 1964).Google Scholar
52. Briggs, D. and Seah, M.P. (eds.), John Wiley and Sons (Chichester, U.K., 1983) Chapter 4.Google Scholar
53. Behm, R.J. and Hbsler, W., in Chem. Phys. Solid Surf.VI, edited by Vanselow, R. and Howe, R. (Springer Series in Surface Sciences 5, 1986), p. 361.Google Scholar
54. Golovchenko, J.A., Science 232, 48 (1986).Google Scholar
55. Hansma, P.K. and Tersoff, J., J. Appl. Phys. 61, R1 (1987).Google Scholar
56. Quate, C.F., Phys. Today 2a (1986).Google Scholar
57. We have used 2″ and 4″ diameter Si(100) wafers (p-type, boron doping to 15–30 W-cm from Uni-Syl) and 4″ Si(lll) (p-type boron doping to 12–20 W-cm from Monsanto) with identical results. The wafer thicknesses are generally between 20 and 25 mm. In all cases, the silicon wafers were prime/electronic grade quality.Google Scholar
58. All cleaning of the silicon samples was performed in the VLSI clean room of the U. C. Berkeley Microfabrication Laboratory. The silicon wafers were cleaned by immersion into teflon containers of H2SO4 and H2O2 at 12°C for 10 minutes. To avoid wasting the sulfuric acid, 100ml of H2O2 was added to 1Lof H2SO4which will effectively strip 12 wafers of hydrocarbon contamination. WARNING: The H2SO4 and H2O2 solution is an extremely harsh oxidant and should be handled with caution. The wafers were next treated with a hydrofluoric acid solution that is prepared by mixing 49% HF from Aldrich (electronic grade, used as received) with DI H2O in a ratio of 100:1 (H2O:HF). Typically, the wafers are immersed in the HF solution only long enough for them to emerge completely dry (about 10–15 sec). The weakly oxidizing solution of DI H2O and H2O2 (100:1) is used next to grow a uniform oxide. This solution is kept at 60°C and the wafers are immersed until they emerge completely wet with water (about 30 sec).Google Scholar
59. Phillips, J. and Bednarski, M.B., unpublished results.Google Scholar
60. Bradshaw, J.S., Bruening, R.L., Krakowiak, K.E., Tarbet, B.O., Bruening, M.L., Izatt, R.M., and Christensen, J.J., J. Chem. Soc. Chem. Comm., 812–814 (1988).Google Scholar
61. Collman, J.P. and Hegedus, L.S., Principles and Applications of Organotransition Metal Chemistry 384–39262 (1980).Google Scholar
62. Mastandrea, M., Wilson, T., and Bednarski, M., J. Mat. Ed., in press.Google Scholar
63. Paulsen, H. and Tietz, H., Angew. Chemie. Intl. Ed. Engl. 24, 128 (1985).Google Scholar
64. Schmidt, R.R., Angew. Chemie. Intl. Ed. Engl. 25, 212 (1986).Google Scholar
65. Sharon, N. and Lis, H., Science 246 227 (1989).Google Scholar
66. Finlay, B.B., Heffron, F., and Falkow, S., Science 243, 940 (1989).Google Scholar
67. Hanson, M.S. and Brinton, C.C., Nature 265 (1988).Google Scholar
68. Svennerholm, L., Fredman, P., Elwing, H., Holmgren, J., and Strannegard, O., in Cell Surface Glycolipids, edited by Sweeley, C.C. (ACS Symposium Series, 1980), Chapt. 21.Google Scholar
69. Duguid, J.P. and Old, D.C., in Adhesive Properties of Enterovacteriaceae, edited by Beachey, E.H., Bacterial adherence, redeptors and recognition (Chapman and Hall, London 6(B), 1980) p. 186217.Google Scholar
70. Duguid, J.P. and Old, D.C., in Adhsive Properties of Enterobactericiae, edited by Beachey, E.H., Bacterial Adherence, Chapman and Hall: London, p. 199 (1980).Google Scholar
71. Brinton, C.C., Nature 183, 782 (1959).Google Scholar
72. Hirschbein, B.L., Mazenod, F.P., and Whitesides, G.M., J. Org. Chem. 47, 3765 (1982).Google Scholar
73. Schanbacher, F. and Ebner, K.E., J. Bio. Chem. 245, 5057 (1970).Google Scholar
74. Bednarski, M., Wilson, T., and Phillips, J., manuscript in preparation.Google Scholar
75. Korhonen, T.K., Lounatmaa, K., Ranta, H., and Kuus, N., J. of Bacteriology, 144, 800 (1980).Google Scholar
76. Firon, N., Ofek, I., and Sharon, N., Infect. Immun. 43, 1088 (1984).Google Scholar