Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T09:36:37.049Z Has data issue: false hasContentIssue false

Subwavelength Structured Optical Elements and Resonant Grating Filters

Published online by Cambridge University Press:  01 February 2011

Hisao Kikuta
Affiliation:
College of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai, Osaka, 599–8531, Japan Akio Mizutani, Hiroshi Toyota and Wanji Yu Osaka Science and Technology Center, 2–7–1, Ayumino, Izumi, Osaka, 594–1157, Japan
Koichi Iwata
Affiliation:
College of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai, Osaka, 599–8531, Japan Akio Mizutani, Hiroshi Toyota and Wanji Yu Osaka Science and Technology Center, 2–7–1, Ayumino, Izumi, Osaka, 594–1157, Japan
Get access

Abstract

We developed several optical elements with subwavelength-structured surfaces. Antireflection surfaces were fabricated on a diffraction grating. A micro-retarder array realized by the form-birefringent effect has been made for an application to a polarization camera system. And we developed narrow-band reflection wavelength filters called “guided-mode resonant grating filters”. This filter bases on a coupling of guided mode and radiation mode. After describing some examples of the filters, we mention a grating structure for an optical switch with nonlinear optical material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grann, E. B., Moharam, M. G., and Pommet, D. A., J. Opt. Soc. Am. A, 11, 2695 (1994).Google Scholar
2. Yariv, A. and Yhe, P, Chap. 6 in Optical Waves in Crystals (John Wiley & Sons, New York, 1984).Google Scholar
3. Petit, R., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).Google Scholar
4. Farn, M. W., Appl. Opt. 31, 4453 (1992).Google Scholar
5. Wilson, S. J. and Hutley, M. C., Optica Acta, 29, 993 (1982).Google Scholar
6. Raguin, D., Morris, M., Opt. & Photon. News, 3, 33 (1995).Google Scholar
7. Flanders, D. C., Appl. Phys. Lett., 42, 492 (1983).Google Scholar
8. Xu, F., Tyan, R., Sun, P., Fainman, Y., Cheng, C., and Scherer, A., Opt. Lett., 21, 1513 (1996).Google Scholar
9. Yu, W., Konishi, T., Hamamoto, T., Toyota, H., Yotsuya, T., and Ichioka, Y., Appl. Opt. 41, 96 (2002).Google Scholar
10. Kikuta, H., Mumata, K., Muto, M., et al, Technical Digest of OSA Annual Meeting 2003, ThRR3.Google Scholar
11. Mashev, L. and Popov, E., Opt. Commun. 55, 377 (1985).Google Scholar
12. Wang, S. S. and Magnusson, R., Appl. Opt. 32, 2606 (1993).Google Scholar
13. Liu, Z. S., Tibuleac, S., Shin, D., Young, P. P., and Magnusson, R., Opt. Lett. 23, 1556 (1998).Google Scholar
14. Kikuta, H., Toyota, H., and Yu, W., Optical Review, 10, 63 (2003).Google Scholar
15. Toyota, H., Takahara, K., Okano, M., Yotsuya, T. and Kikuta, H., Jpn. J. Appl. Phys. 40, L747 (2001).Google Scholar
16. Yu, W., Kikuta, H., Konishi, T., Jpn. J. Appl. Phys. (submitted).Google Scholar
17. Kikuta, H., Ohira, Y., Kubo, H. and Iwata, K., J. Opt. Soc. Am. A, 15, 1577 (1998).Google Scholar
18. Mizutani, A., Nakajima, K., Kikuta, H. and Iwata, K., J. Opt. Soc. Am. A, 18, 1261 (2001).Google Scholar
19. Mizutani, A., Kikuta, H., Iwata, K., Toyota, H., J. Opt. Soc. Am. A, 19, 1346 (2002).Google Scholar
20. Lemarchand, F., Sentenac, S., and Giovannni, H., Opt. Lett., 23, 1149 (1998).Google Scholar
21. Mizutani, A., Kikuta, H. and Iwata, K., Optical Review, 10, 13 (2003).Google Scholar