Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T10:33:49.378Z Has data issue: false hasContentIssue false

Subnanosecond Time-Resolved Electron Diffraction from Thin Crystalline Gold Films

Published online by Cambridge University Press:  25 February 2011

Hsiu-Cheng Chen
Affiliation:
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 Also at: Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0011
Gerard A. Mourou
Affiliation:
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299
Robert S. Knox
Affiliation:
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 Also at: Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0011
Get access

Abstract

A 100-ps-resolution electron pulse was used to study a 25-nm thick gold single crystal irradiated by a synchronized infrared optical pulse. The change in electron diffraction intensity following laser heating (the Debye-Waller effect) was measured as a function of delay time. The relaxation of a crystal lattice distortion in the surface region appears to explain an observed oscillation in time of the scattered electron intensity. This novel technique provides a sensitive structure probe for short-time dynamics and is, we believe, the fastest lattice temperature probe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hirvonen, J. K., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (North-Holland, New York, 1984), p. 621.Google Scholar
2 Nastasi, M., Kossowsky, R., Hirvonen, J-P., and Elliot, N., J. Mat. Res. 3, 1127 (1988).Google Scholar
3 Jervis, T. R., Hirvonen, J-P., Nastasi, M., J. Mat. Res. 3, 104 (1988).Google Scholar
4 Hirvonen, J-P., Nastasi, M., Jervis, T. R., Tesmer, J. R., and Zocco, T. G., Mat. Res. Soc. Symp. Proc. 140, 183 (1989).Google Scholar
5 Follstaedt, D. M., Knapp, J. A., and Pope, L. E. Mat. Res. Soc. Symp. Proc. 140, 133 (1989).Google Scholar
6 Singer, I. L. and Jeffries, R. A., Appl. Phys. Lett. 43, 925 (1983).Google Scholar
7 Hirvonen, J-P., Nastasi, M., Jervis, T. R., Tesmer, J. R., and Zocco, T. G., in Proceedings of the 5th International Congress on Tribology, EUROTRIB '89, edited by Holmberg, K. and Nieminen, I. (Finnish Society for Tribology, Espoo, Finland 1989) pp. 172177.Google Scholar
8 Jervis, T. R., Hirvonen, J-P., Nastasi, M.. and Cohen, M., Mat. Res. Soc. Symp. Proc. 157 (this volume).Google Scholar
9 Ziegler, J. F., Biersack, J. P., and Littmark, U, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
10 Deconninck, G., Introduction to Radioanalytical Physics (Akademiai Kiado, Budapest, 1978) p. 229.Google Scholar
11 Myers, S. M. and Langley, R. A., J. Appl. Phys. 46, 1034 (1975).Google Scholar
12 Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976) p. 580.Google Scholar
13 Hirvonen, J-P. and Anttila, A., Appl. Phys. Lett. 46, 835 (1985).Google Scholar
14 Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976) p. 579.Google Scholar
15 Aziz, M. J., Mat. Res. Soc. Symp.Proc. 80, 25 (1987).Google Scholar
16 Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976) p. 597.Google Scholar
17 Follstaedt, D. M. and Knapp, J. A., Mat. Res. Soc. Symp. Proc. 51, 473 (1986).Google Scholar
18 Sare, J. R., Scripta Met. 9, 607 (1976).Google Scholar
19 Antonione, C., Battezzati, L., Riontino, G., and Turco, C., Mat. Res. Soc. Symp. Proc. 28, 105 (1984).Google Scholar
20 Roswell, P. G. and Chadwick, G. A., J. Mat. Sci. 11, 2287 (1976).Google Scholar