Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:32:34.462Z Has data issue: false hasContentIssue false

Sub-200 Oe Giant Magnetoresistance in Manganite Tunnel Junctions

Published online by Cambridge University Press:  10 February 2011

Gang Xiao
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
A. Gupta
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York, 10598
X. W. Li
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
G. Q. Gong
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
J. Z. Sun
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York, 10598
Get access

Abstract

Metallic manganite oxides, La1-xDxMnO3 (D=Sr, Ca, etc.), display “colossal” magnetoresistance (CMR) near their magnetic phase transition temperatures (Tc) when subject to a Tesla-scale magnetic field. This phenomenal effect is the result of the strong interplay inherent in this class of materials among electronic structure, magnetic ordering, and lattice dynamics. Though fundamentally interesting, the CMR effect achieved only at large fields poses severe technological challenges to potential applications in magnetoelectronic devices, where low field sensitivity is crucial. Among the objectives of our research effort involving manganite materials is to reduce the field scale of MR by designing and fabricating tunnel junctions and other structures rich in magnetic domain walls. The junction electrodes were made of doped manganite epitaxial films, and the insulating barrier of SrTiO3. The interfacial expitaxy has been imaged by using high-resolution transmission electron microscopy (TEM). We have used self-aligned lithographic process to pattern the junctions to micron scale in size. Large MR values close to 250% at low fields of a few tens of Oe have been observed. The mechanism of the spin-dependent transport is due to the spin-polarized tunneling between the half-metallic electrodes, in which the spins of the conduction electrons are nearly fully polarized. We will present results of field and temperature dependence of MR in these structures and discuss the electronic structure of the manganite inferred from tunneling measurement. Results of large MR at low fields due to the grain-boundary effect will also be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Babich, M. N., Broto, J. M, Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
3. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
4. Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992)Google Scholar
5. von Helmolt, R., Wecker, J., Holzapfel, B., Shultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
6. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science, 264, 413 (1994).Google Scholar
7. Gong, G. Q., Canedy, C. L., Xiao, Gang, Sun, J. Z., Gupta, A., and Gallagher, W. J., Appl. Phys. Lett. 67, 1783 (1995).Google Scholar
8. Xiao, Gang, Gong, G. Q., Canedy, C. L., McNiff, E. J. Jr, and Gupta, A., J. Appl. Phys. 81, 5324 (1997).Google Scholar
9. Miyazaki, T. and Tezuka, N., J. Magn. Magn. Mater. 139, L231 (1995).Google Scholar
10. Moddera, J. S., Kinder, L. R., Wong, T. M., and Meservey, R., Phys. Rev. Lett, 74, 3272 (1995).Google Scholar
11. Gallagher, W. J., Parkin, S. S. P., Lu, Yu, Bian, X. P., Marley, A., Roche, K. P., Altman, R. A., Rishton, S. A., Jahnes, C., Shaw, T. M., and Xiao, Gang, J. Appl. Phys. 81, 3741 (1997);Google Scholar
Lu, Yu, Li, X. W., Gong, G. Q., Xiao, Gang, Gupta, A., Lecoeur, P., Sun, J. Z., Wang, Y. Y., and Dravid, V. P., Phys. Rev. B 54, R8357 (1996);Google Scholar
Sun, J. Z., Gallagher, W. J., Duncombe, P. R., Krusin-Elbaum, L., Altman, R. A., Gupta, A., Lu, Yu, Gong, G. Q., and Xiao, Gang, Appl. Phys. Lett. 69, 3266 (1996).Google Scholar
12. Lu, Yu, Altman, R. A., Marley, A., Rishton, S. A., Trouilloud, P. L., Xiao, Gang, Gallagher, W. J., and Parkin, S. S. P., Appl. Phys. Lett. 70, 2610 (1997).Google Scholar
13. Julliere, M., Phys. Lett. A 54A, 225 (1975).Google Scholar
14. Meservey, R. and Tedrow, P. M., Phys. Rep. 239, 174 (1994).Google Scholar
15. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
16. Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
17. de Gennes, P.-G., Phys. Rev. 118, 141 (1996).Google Scholar
18. Gupta, A., Gong, G. Q., Xiao, Gang, Duncombe, P. R., Lecoeur, P., Trouilloud, P., Wang, Y. Y., Dravid, V. P., and Sun, J. Z., Phys. Rev. 54, R15629 (1996).Google Scholar
19. Li, X. W., Gupta, A., Xiao, Gang, and Gong, G. Q., Appl. Phys. Lett. 71, 1124 (1997).Google Scholar