Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:58:21.172Z Has data issue: false hasContentIssue false

A Study Towards the Design of Materials for Nonlinear Optical Applications Using First Principle Calculations

Published online by Cambridge University Press:  10 February 2011

Kiet A. Nguyen
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPJ, Wright-Patterson Air Force Base, Ohio 45433-7702, Kiet.Nguyen@afrl.af.mil
Paul N. Day
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPJ, Wright-Patterson Air Force Base, Ohio 45433-7702, Kiet.Nguyen@afrl.af.mil
Ruth Pachter
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPJ, Wright-Patterson Air Force Base, Ohio 45433-7702, Kiet.Nguyen@afrl.af.mil
Get access

Abstract

Electronic structure calculations are carried out to predict properties of reverse saturable absorption (RSA) materials that are important in nonlinear optical (NLO) applications. The RSA dyes under investigation are zinc porphyrins with a combination of halogen and phenyl substituents. The computed data include electronic spectra for the ground and triplet excited states as well as ionization potentials. These properties are important in predicting the performance of NLO materials. Since comprehensive data are not available, we begin with the basic porphyrin unit, then systematically replace the peripheral hydrogens of porphin with halogen and phenyl groups to study the substituent effects. The results of halogenated porphyrins and halogenated tetraphenylporphyrins provide insightful accounts of effects of phenyl, fluoro, chloro, and bromo substituents on the spectra of these systems. The computed spectra and IPs are in excellent agreement with available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Seto, J., Tamura, S., Asai, N., Kishii, N., Kijima, Y. and Matsuzawa, N., Pure & Appl.Chem. 68 1429 (1996).Google Scholar
2. Sevian, A., Ravikanth, M. and Kumar, G. R., Chem. Phys. Lett. 263 241 (1996).Google Scholar
3. Qureshi, F. M., Martin, S. J., Long, X., Bradley, D. D. C., Henari, F. Z., Blau, W. J., Smith, E. C., Wang, C. H., Kar, A. K. and L., A. H., Chem. Phys. 231 87 (1998).Google Scholar
4. Stiel, H., Volkmer, A., Ruckmann, I., Zeug, A., Ehrenberg, B. and Roder, B., Optics Comm. 155 134 (1998).Google Scholar
5. Su, W., Cooper, T. M. and Brant, M. C., Chem. Mater. 10 1212 (1998).Google Scholar
6. Woller, E. K. and DiMagno, S. G., J. Org. Chem. 62 1588 (1997).Google Scholar
7. Bhyrappa, P., Nethaji, M. and Krishnan, V., Chem. Lett. 869 (1993).Google Scholar
8. Weiss, C., Kobayashi, H. and Gouterman, M., J. Mol. Spectrosc. 16 415 (1965).Google Scholar
9. Gouterman, M., J. Chem. Phys. 33 1523 (1960).Google Scholar
10. Stratmann, R. E., Scuseria, G. E. and Frisch, M. J., J. Chem. Phys. 109 8218 (1998).Google Scholar
11. Nguyen, K. A., Day, P. N. and Pachter, R., J. Chem. Phys. 110 91359144 (1999).Google Scholar
12. Nguyen, K. A., Day, P. N. and Pachter, R., J. Phys. Chem. 103 7378 (1999).Google Scholar
13. Ghosh, A., J. Am. Chem. Soc. 117 46914699 (1995).Google Scholar
14. Ghosh, A. and Vangberg, T., Theor. Chem. Acc. 97 134 (1997).Google Scholar
15. Vangberg, T. and Ghosh, A., J. Am. Chem. Soc. 120 6227 (1998).Google Scholar
16. Nguyen, K. A., Day, P. N. and Pachter, R., J. Phys. Chem. submitted (1999).Google Scholar
17. Kohn, W. and Sham, L. J., Phys. Rev. A 140 1133 (1965).Google Scholar
18. Casida, M. E., in Recent Advances in Density Functional Methods, edited by Chong, D. P. (World Scientific, Singapore, 1995), p. 155.Google Scholar
19. Becke, A. D., J. Chem. Phys. 98 5648 (1993).Google Scholar
20. Becke, A. D., Phys. Rev. A 38 3098 (1988).Google Scholar
21. Lee, C., Yang, W. and Parr, R. G., Phys. Rev. B 37 785 (1988).Google Scholar
22. Ditchfield, R., Hehre, W. J. and Pople, J. A., J. Chem. Phys. 54 724 (1971).Google Scholar
23. Hehre, W. J., Ditchfield, R. and Pople, J. A., J. Chem. Phys. 56 2257 (1972).Google Scholar
24. Stevens, W. J., Basch, H. and Krauss, M., J. Chem. Phys. 81 6026 (1984).Google Scholar
25. Stevens, W. J., Basch, H., Krauss, M. and Jasien, P., Can. J. Chem. 70 612 (1992).Google Scholar
26. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B. G., Chen, W., Wong, M. W., Andres, J.L., Head-Gordon, M., Replogle, E. S. and Pople, J. A., Gaussian 98 (Revision A.7) (Gaussian, Inc, Pittsburgh PA, 1998)Google Scholar
27. Pekkarinen, L. and Linschitz, H., J. Am. Chem. Soc. 82 2407 (1960).Google Scholar
28. Bhyrappa, P. and Krishnan, V., Inorg. Chem. 30 239 (1991).Google Scholar
29. Khandelwal, S. C. and Roebber, J. L., Chem. Phys. Lett. 34 255 (1975).Google Scholar