Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-29T06:47:26.188Z Has data issue: false hasContentIssue false

Study of the Transverse Piezoelectric Coefficient of Pb(Zr,Ti)O3 Thin Films as a Function of Texture and Composition

Published online by Cambridge University Press:  10 February 2011

A. Seifert
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
N. Ledermann
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
S. Hiboux
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
P. Muralt
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.
Get access

Abstract

The effective transverse piezoelectric coefficient was measured on 1 μm thick sol-gel processed Pb(Zr,Ti)O3 (PZT) thin films as a function of texture and composition. Optimal values were obtained with PZT films of {100} texture near the morphotropic phase boundary (53/47). The best value amounted to -12 C/m2

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Muralt, P., Int.Ferroelectrics 17, 297307 (1997).Google Scholar
2. Muralt, P., et al. , Sensors and Actuators A, 53, 397403 (1996).Google Scholar
3. Dubois, M.-A. and Muralt, P., Appl.Phys.Lett., 74, 30323034 (1999).Google Scholar
4. Muralt, P., etal., J. Appl. Phys., 83, 38353841 (1998).Google Scholar
5. Maeder, T., et al. , British Ceram. Proc. 54, 206218 (1995).Google Scholar
6. Gardeniers, J. G. E., Rittersma, Z. M., and Burger, G. J., J.Appl.Phys., 83, 78447854 (1998).Google Scholar
7. Preissig, F. J. v., Zeng, H., and Kim, E. S., Smart Mater.Struct. 7, 396403 (1998).Google Scholar
8. Dubois, M.-A., et al. , Int. Ferroelectrics 22, 535543 (1998).Google Scholar
9. Deschanvres, J. L., et al. , Sensors & Actuators A, 33, 4345 (1992).Google Scholar
10. Tanaka, K., et al. , Jpn.J.Appl.Phys., 34, 52305232 (1995).Google Scholar
11. Toyama, M., et al. , Sensors and Actuators A, 45, 125129 (1994).Google Scholar
12. Shepard, J. F., Moses, P. J., and Trolier-McKinstry, S., Sensors and Actuators A, 71, 133138 (1998).Google Scholar
13. Guang, L., et al. , Jap. J. Appl. Phys. 24, 425426 (1985).Google Scholar
14. Kanno, I., et al. , Appl. Phys. Lett. 70, 13781380 (1997).Google Scholar
15. Dubois, M.-A. and Muralt, P., Sensors and Actuators A, 77, 106112 (1999).Google Scholar
16. Berlincourt, D. A., Cmolik, C., and Jaffe, H.. Proceedings of the IRE 48, 222229 (1960)Google Scholar
17. Du, X., Belegundu, U., and Uchino, K., Jpn.J.Appl.Phys., 36, 55805587 (1997).Google Scholar