Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T03:25:09.999Z Has data issue: false hasContentIssue false

A Study of the Temperature-Dependence of Low-Frequency, Raman-Active Phonons in Stage-2 Graphite-K and Graphite-Rb Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

J. Giergiel
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, 40506, USA
P. C. Eklund
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, 40506, USA
R. Al-Jishi
Affiliation:
Center for Materials Science and Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA.
G. Dresselhaus
Affiliation:
Center for Materials Science and Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA.
Get access

Abstract

We report results from a Raman scattering study of stage 2 Graphite-Rb and Graphite-K in the low frequency region (ω < 150 cm-1) as a function of temperature (80K < T < 300K). Four features are seen in the 80K spectra and are interpreted in terms of a Born– von Kármán lattice dynamics model. The temperature-dependence of the Raman spectra is discussed in connection with reported phase transitions in stage 2 alkalimetal graphite compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solin, S.A., Adv. Chem. Phys., Vol. XLIX, p. 455 (1982).CrossRefGoogle Scholar
Dresselhaus, M.S., Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
2. Suzuki, M., Ikeda, H., Suematsu, H., Endoh, Y. and Shiba, H., Proceedings of IVth Yamada Conference on Physics and Chemistry of Layered Materials, Sendai, 1980, Physica 105B, 280 (1981).Google Scholar
3. Katbe, N., Mazurek, H., Dresselhaus, M.S. and Dresselhaus, G., Physica 105B, 272 (1981);Google Scholar
Berker, A.N., Kambe, N., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. Lett. 45, 1452 (1980).CrossRefGoogle Scholar
4. Eklund, P.C., Giergiel, J. and Boolchand, P. in Physics of Intercalation Compounds, Pietronero, L., Tosatti, E. eds. (Springer, Berlin 1981), p. 168;CrossRefGoogle Scholar
Giergiel, J., Eklund, P.C., Al-Jishi, R., and Dresselhaus, G., Phys. Rev. B, in press.Google Scholar
5. Wada, N., Klein, M.V. and Zabel, H. in Physics of Intercalation Compounds, Pietronero, L., Tosatti, E. eds., (Springer, Berlin 1981), p. 199.CrossRefGoogle Scholar
6. Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B 26, 4523 (1982).CrossRefGoogle Scholar
7. Dresselhaus, G. and Leung, S.Y., Physica 105B, 495 (1981).Google Scholar
8. Magerl, A. and Zabel, H., Physics of Intercalation Compounds, Pietronero, L., Tosatti, E. eds. (Springer, Berlin 1981), p. 180.CrossRefGoogle Scholar
9. Caswell, N., Solin, S.A., Hayes, T.M., and Hunter, S.J., Physica, 99B, 463 (1980).Google Scholar
10. Mori, M., Moss, S.C., Yan, Y.M., and Zabel, H., to be published.Google Scholar