Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-06T03:20:16.986Z Has data issue: false hasContentIssue false

Study of the Homogeneity of Fe-Doped Semiinsulating InP Wafers

Published online by Cambridge University Press:  10 February 2011

J. Jimenez
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
R. Fornar
Affiliation:
MASPEC CNR Institute, via Chiavari 18A, 43100 Parma, Italy.
M. Curti
Affiliation:
MASPEC CNR Institute, via Chiavari 18A, 43100 Parma, Italy.
E. de la Puente
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
M. Avella
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
L. F. Sanz
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
M. A. Gonzalez
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
A. Alvarez
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
Get access

Abstract

The homogeneity of semiinsulating Fe-doped InP wafers is studied using mapping techniques, Scanning Photocurrent (SPC) and Scanning Photoluminescence (SPL). These techniques allow to map with a micrometric spatial resolution the distribution of electrically active levels, in particular substitutional iron levels, Fe2+ and Fe3+. The correlation between both measurements allows to obtain information about the local compensation in terms of the [Fe3++Fe2+]/[Fe2+] ratio. Samples thermally treated were studied in order to analyse the consequences of the annealing on the homogeneity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Müller, G.; Phys. Scripta 35, 201 (1991)Google Scholar
2. Zeisse, C.R., Antypas, G.A., Hopkins, C.; J. Cryst. Growth 64, 217 (1983)Google Scholar
3. Meier, W., Alt, H. Ch., Vetter, Th., Völkl, J. and Winnacker, A;, Semicon. Sci. Technol. 6, 297 (1991)Google Scholar
4. Longere, J.Y., Schohe, K., Krawczyk, S., Coquille, R., L'Haridon, H. and Favennec, P.N., J. Appl. Phys. 68, 755 (1990)Google Scholar
5. Fornari, R., Frigeri, C., Weyher, J.L., Krawczyk, S.K., Kraffi, F. and Mignoni, G., Proc. of 7th Semi-insulating III–V Materials Conference, Ed. Miner, C., Ford, W. and Weber, E., IOP Bristol, 1993, p. 39 Google Scholar
6. Fornari, R., Gilioli, E., Sentiri, A., Mignoni, G., Avella, M., Jimenez, J., Alvarez, A., M.A. Gonzalez; Mater. Sci. Eng. B 44 (1997) 233.Google Scholar
7. Avella, M., Jimenez, J., Alvarez, A., Fornari, R., Gilioli, E., A. Sentiri; J.Appl. Phys. 82, 3832 (1997)Google Scholar
8. Alvarez, A., Avella, M., Jimenez, J., Gonzalez, M.A. and Fomari, R., Semicond. Sci. Technol. 11, 941 (1996)Google Scholar
9. Sanz, L.F., Avella, M., Jimenez, J., Gonzalez, M.A., Fornari, R.; 19th Int. Conf. on Defects in Semiconductors, Aveiro (Portugal) July 21–25, 1997. (to be published)Google Scholar
10. Takanohashi, T. and Nakajima, K., J. Appl. Phys. 65, 3933 (1989)Google Scholar
11. Zappettini, A., Fomari, R., Capelletti, R.. Mat. Sci. Eng. B 45, 147 (1997)Google Scholar