Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T03:57:58.728Z Has data issue: false hasContentIssue false

A Study of the Factors Which Determine the Modulation Speed of a Shallow PN Junction Porous Silicon Led

Published online by Cambridge University Press:  15 February 2011

A. J. Simons
Affiliation:
Defence Research Agency, St. Andrew's Road, Great Malvern, Worcestershire, WR14 3PS, UK.
T. I. Cox
Affiliation:
Defence Research Agency, St. Andrew's Road, Great Malvern, Worcestershire, WR14 3PS, UK.
A. Loni
Affiliation:
Defence Research Agency, St. Andrew's Road, Great Malvern, Worcestershire, WR14 3PS, UK.
P. D. J. Calcott
Affiliation:
Defence Research Agency, St. Andrew's Road, Great Malvern, Worcestershire, WR14 3PS, UK.
M. J. Uren
Affiliation:
Defence Research Agency, St. Andrew's Road, Great Malvern, Worcestershire, WR14 3PS, UK.
L. T. Canham
Affiliation:
Defence Research Agency, St. Andrew's Road, Great Malvern, Worcestershire, WR14 3PS, UK.
Get access

Abstract

The effect of the chemical thinning of the porous silicon structure on the speed and efficiency of electroluminescent devices, produced by the anodisation of a pn junction in bulk silicon is investigated. Thinning of the silicon wires results in an increase in the efficiency but at the expense of a reduction in operating speed. It is demonstrated that the operating speed is limited by the photoluminescence lifetime for small signal excitation. However, for large signals, the electroluminescence can be turned off more than 5 times faster than the photoluminescence lifetime, indicating that this need not necessarily limit device operating speed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
2.Loni, A., Simons, A. J., Cox, T. I., Calcott, P. D. J. and Canham, L. T., Electronics Letters, 31, 1288 (1995).Google Scholar
3.Linnros, J. and Lalic, N., Appl. Phys. Lett., 66, 3048 (1995).Google Scholar
4.Tsybeskov, L., Duttagupta, S. P., Hirschman, K. D. and Fauchet, P. M., Appl. Phys. Lett., 68, 2058 (1996).Google Scholar
5.Lazarouk, S., Jaguiro, P., Katsouba, S., Masini, G., Monica, S. L., Maiello, G. and Ferrari, A., Appl. Phys. Lett., 68, 2108 (1996).Google Scholar
6.Wang, J., Zhang, F. L., Wang, W. C., Zheng, J. B., Hou, X. Y. and Wang, X., J. Appl. Phys., 75, 1070 (1994).Google Scholar
7.Simons, A. J., Cox, T. I., Loni, A., Canham, L. T., Uren, M. J., Reeves, C., Cullis, A. G., Calcott, P. D. J., Houlton, M. R. and Newey, J. P., in Proceedings of the International Symposium on Advanced Luminescent Materials, edited by Lockwood, D.J., Fauchet, P.M., Koshida, N. and Brueck, S.R.J. (Electrochemical Society, PV92–25, 1996) pp 7386.Google Scholar
8.Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J. and Brumhead, D., J. Phys.: Condensed Matter, 5, L91 (1993).Google Scholar
9.Xie, Y. H., Wilson, W. L., Ross, F. M., Mucha, J. A., Fitzgerald, E. A., Macaulay, J. M. and Harris, T. D., J. Appl. Phys., 71, 2403 (1992).Google Scholar
10.Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J. and Brumhead, D., J. Lumin., 57, 257 (1993).Google Scholar
11.Cullis, A. G. and Canham, L. T., Nature, 353, 335 (1991).Google Scholar