Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T23:17:19.221Z Has data issue: false hasContentIssue false

A Study of the CdS/CuIn(Ga)Se2 Interface in Thin Film Solar Cells

Published online by Cambridge University Press:  10 February 2011

Kannan Ramanathan
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
Holm Wiesner
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
Sally Asher
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
David Niles
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
John Webb
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
James Keane
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
Rommel Noufi
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401.
Get access

Abstract

In this paper we describe our research efforts directed towards the understanding of the CdS/CuInGaSe2junctions and, specifically, the interaction of the chemical bath with the CuInGaSe2 (CIGS). We find that Cd and S diffuse into the absorber during the CdS growth. Heating the absorbers in Cd partial baths resuled in a significant improvement in the ZnO/CIGS device properties. Photoluminescence measurements indicate that the effect of Cd is very similar to that of CBD CdS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tuttle, J. R., Ward, J. S., Duda, A., Berens, T. A., Contreras, M. A., Ramanathan, K., Tennant, A. L., Keane, J., Cole, E. D., Emery, K. and Noufi, R., Proc. Mat. Res. Soc. Symp., 426, 143 (1996).Google Scholar
2. Pier, D., Chesarek, W., Dietrich, M., Kuriyabawa, S. and Gay, R., Proc. 11th European PV Solar Energy Conference, 1992, pp 107111.Google Scholar
3. For example, see Kylner, A. and Wirde, M., Japan. J. Appl. Phys., 36, 2167, 1997.Google Scholar
4. Kessler, J., Velthaus, K. O., Ruckh, M., Laichinger, R., Schock, H. W., Proc. 6th Int. PVSEC, New Delhi, India, February 1994, p 1005.Google Scholar
5. Kessler, J., Ruckh, M., Hariskos, D., Ruhle, U., Menner, R. and Schock, H. W., Proc 23rd IEEE PVSC, Louisville, KY, May 1993, p. 447.Google Scholar
6. Burgelman, M., et. al., Prog. Photovoltaics, 5, 121 (1997).Google Scholar
7. Walter, T., Hariskos, D., Herberholz, R., Nadenau, V., Schaffler, R. and Schock, H. W., Proc. 13th Eurpoean PVSEC, Nice, France, 1995, p. 1999.Google Scholar
8. Lee, Y. J. and Gray, J. L., Proc. 23rd IEEE PVSC, Louisville, KY, May 1993, p. 586.Google Scholar
9. Gabor, A., Tuttle, J. R., Albin, D. S.. Contreras, M. A. and Noufi, R., Appl. Phys. Lett. 65, 198 (1994).Google Scholar
10. Zott, S., Leo, K., Ruckh, M. and Schock, H. W., Proc. 25th IEEE PVSC, Washington, D.C., May 1996, p. 817.Google Scholar
11. Migliorato, P., Shay, J. L., Kasper, H. M. and Wagner, S., J. Appl. Phys., 46, 1777 (1975).Google Scholar
12. Tell, B. and Bridenbaugh, P. M., J. Appl. Phys., 48, 2477 (1977).Google Scholar