Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T07:44:49.319Z Has data issue: false hasContentIssue false

Study of the Carrier Concentration Effect on Si Enhanced AlGaAs/GaAs Superlattice Mixing

Published online by Cambridge University Press:  26 February 2011

Ping Mei
Affiliation:
Physics Department, Rutgers University, Piscataway, NJ 08855–0849
T. Venkatesan
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
S. A. Schwarz
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
N. G. Stoffel
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
J. P. Harbison
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
L. A. Florez
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
Get access

Abstract

We have investigated the carrier concentration effect on AlGaAs/GaAs superlattice mixing enhanced by Si doping. The Al0.01Ga0.99As/GaAs superlattice sample with various Si-doping concentrations was grown by molecular beam epitaxy (MBE). Secondary ion mass spectrometry (SIMS) and carrier concentration profiling were used to characterize the Al diffusion and the free-carrier concentration profiles. The Al diffusion coefficients at 800 C show a high power dependence on the free carrier concentration which is not consistent with a Ga vacancy diffusion mechanism. A possible explanation can be provided by a mechanism based on a Si pair diffusion model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kawabe, M., Matsuara, N., Shimizu, N., Hasegawa, F. and Nannichi, Y., Jpn. J. Appl. Phys. Lett., 23, L623 (1984)Google Scholar
2.Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett., 38, 776 (1981)Google Scholar
3.Meehan, K., Gavrilovic, P., Holonyak, N. Jr, Burnham, R. D., and Thornton, R. L., Appl. Phys. Lett. 46, 75 (1985)Google Scholar
4.Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Yoon, H. W., and Arakawa, Y., Nuclear Inst. and Meths. in Phys. Res., B9/20, 777 (1987)Google Scholar
5.Rao, E. V. K., Thibierge, H., Brillouet, F., Alexandre, F., and Azoulay, R., Appl. Phys. Lett. 46, 867 (1985)Google Scholar
6.Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett., 50, 1823 (1987)Google Scholar
7.Deppe, D. G., Holonyak, N. Jr, Kish, F. A., and Baker, J. E., Appl. Phys. Lett.,50, 998 (1987)Google Scholar
8.Kawabe, M., Shimizu, N., Hasegawa, F. and Nannichi, Y., Appl. Phys. Lett., 46, 849 (1985)Google Scholar
9.Chai, Y. G., Chow, R., and Wood, C. E. C., Appl. Phys. Lett., 39, 800 (1981)Google Scholar
10.Tan, T. Y. and Gosele, U., J. Appl. Phys., 61, 1841 (1986)Google Scholar
11.Van Vechten, J. A., J. Vac. Technol. B2, 569 (1984)Google Scholar
12.Greiner, M. E. and Gibbons, J. F., J. Appl. Phys., 57, 5181 (1986)Google Scholar
13.Schwarz, S. A., Venkatesan, T., Bhat, R., Koza, M., Yoon, H. W., Arakawa, Y. and Mei, P., Proc. of the Mat. Res. Soc., Vol. 56, 321Google Scholar
14.Ambridge, T., Stevenson, J. L., and Redstall, R. M., J. Electrochem. Soc., 127, 222 (1980)Google Scholar
15.Van Der Rest, J. and Pecheur, P., Physica 116B, 121 (1983)Google Scholar
16.Dobis, E. A., tell, B., Craighead, H. G. and Tamargo, M. C., J. Appl. Phys. 60, 4150 (1986)Google Scholar