Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T19:40:21.568Z Has data issue: false hasContentIssue false

Study of optical properties and TEM of Nanoparticles in Ni+-implanted Sapphire

Published online by Cambridge University Press:  01 February 2011

X. Xiang
Affiliation:
Department of Applied Physics, University of Electronic and Technology of China, Chengdu, P. R. China, 610054, USA
X.T. Zu*
Affiliation:
Department of Applied Physics, University of Electronic and Technology of China, Chengdu, P. R. China, 610054, USA
S. Zhu
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI48109, USA
L.M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI48109, USA
*
* E-mail: zuxt@sohu.com, Tel & Fax: 86 28 83201939.
Get access

Abstract

64-keV Ni ion implantation was performed at room temperature up to a dose of 1×1017 cm-2 in α-Al2O3 single crystals. The charge states, structure and optical properties of metallic embedded Ni nanoparticles were studied by using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and optical spectroscopy, respectively. XPS analysis showed that implanted Ni ions are mainly in charge state of metallic Ni0. Nanoparticles distributed from the surface to 30 nm below the surface were observed in a bright-field cross-sectional image. The size of nanoparticles ranges from 1 to 5 nm in diameter. A selected area electron diffraction (SAED) pattern shows Ni nanoparticles with lattice parameter a = 0.352 nm. A high-resolution electron microscopy (HREM) image indicated the Ni-implanted area had been entirely amorphized. A new broad absorption band centered at 400 nm appeared in the optical absorption spectrum of the as-implanted crystal, due to surface plasma resonance (SPR) of Ni nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Meldrum, A., Haglund, R.F. Jr, Boatner, L.A., and White, C.W., Advanced Materials, 13 (19), 1431 (2001).Google Scholar
2. Meldrum, A., Boatner, L.A., and White, C.W., Nucl. Instr. and Meth. B, 178, 7 (2001).Google Scholar
3. Arnold, G.W., and Borders, J.A., J. Appl. Phys. 48, 1488 (1977).Google Scholar
4. Magruder, R.H. III, Yang, L., Haglund, R.F. Jr, White, C.W., Yang, L., Dorsinville, R., and Alfano, R.R., Appl. Phys. Lett. 62, 1730 (1993).Google Scholar
5. Antonello, M., Arnold, G.W., Battaglin, G., Bertoncello, R., Cattaruzza, E., Colombo, P., Mattei, G., Mazzoldi, P., and Trivillin, F., J. Mater. Chem. 8, 457 (1998).Google Scholar
6. Liu, Z., Li, H., Feng, X., Ren, S., Wang, H., Liu, Z., and Lu, B., J. Appl. Phys. 84, 1913 (1998).Google Scholar
7. Whichard, G., Hosono, H., Weeks, R.A., Zuhr, R.A., and Magruder, R.H., J. Appl. Phys. 67, 7526 (1990).Google Scholar
8. Johnson, E., Johansen, A., Sarholt, L., and Dahmen, U., Nucl. Instr. and Meth. B, 148, 1034 (1999).Google Scholar
9. Hole, D.E., Townsend, P.D., Barton, J.D., Nistor, L.C., and Van Landuyt, J., J. Non-Cryst. Solids, 180, 266 (1995).Google Scholar
10. Takeda, Y., Hioki, T., Motohiro, T., Noda, S., and Kurauchi, T., Nucl. Instr. and Meth. B, 91, 515 (1994).Google Scholar
11. White, C.W., Thomas, D.K., Hensley, D.K., Zuhr, R.A., McCallum, J.C., Pogany, A., Haglund, R.F., Magruder, R. H., and Yang, L., Nanostruct. Mater. 3, 447 (1993).Google Scholar
12. Henderson, D.O., Mu, R., Yung, Y.S., George, M.A., Burger, A., Morgan, S.H., White, C.W., Zuhr, R.A., and Magruder, R.H., J. Vac. Sci. Technol. B, 13, 1198 (1995).Google Scholar
13. Alves, E., MacHargue, C., Silva, R.C., Jesus, C., Conde, O., da Silva, M.F., and Soares, J.C., Surf. and Coat. Tech. 128–129, 434 (2000).Google Scholar
14. Hunt, E.M. and Hampikian, J.M., J. Mater. Sci. 36, 1963 (2001).Google Scholar
15. Hunt, E.M. and Hampikian, J.M., Acta Mater. 47, 1497 (1999).Google Scholar
16. Ila, D., Williams, E.K., Sarkisov, S., Poker, D.B., and Hensley, D.K., Mater. Res. Soc. Symp. Proc. 504, 381 (1999).Google Scholar
17. Chen, W., Tang, H., Shi, C., Deng, J., Shi, J., Zhou, Y., Xia, S., Wang, Y., and Yin, S., Appl. Phys. Lett. 67, 317 (1995).Google Scholar
18. Choi, S. and Takeuchi, T., Phys. Rev. Lett. 50, 1474 (1983).Google Scholar
19. Johnson, L.F., Dietz, R.E., and Guggenheim, H.J., Phys. Rev. Lett. 11, 318 (1963).Google Scholar
20. Keppler, H. and Bagdassarov, N., Chemical Geology, 158, 105 (1999).Google Scholar
23. Bogomolova, L.D., Krasil'nikova, N.A., and Tarasova, V. V., J. Non-Cryst. Solids, 319, 225 (2003).Google Scholar
21. Baldochi, S.L., Santo, A.M.E., Martins, E., Duarte, M., Vieira, M.M.F., Vieira, N.D. Jr, and Morato, S.P., J. Crystal Growth, 166, 375 (1996).Google Scholar
22. White, C.W., Budai, J.D., Withrow, S.P., Zhu, J.G., Sonder, E., Zuhr, R.A., Meldrum, A., Hembree, D.M. Jr, Henderson, D.O., and Prawer, S., Nucl. Instr. and Meth. B, 141, 228 (1998).Google Scholar
23. Ila, D., Williams, E.K., Zimmerman, R.L., Poker, D.B., and Hensley, D.K., Nucl. Instr. and Meth. B, 166–167, 845 (2000).Google Scholar
24. Duvanov, S.M. and Balogh, A.G., Nucl. Instr. and Meth. B, 171, 475 (2000).Google Scholar
25. McHargue, Carl J., Mater. Sci. and Eng. A, 253, 94 (1998).Google Scholar
26. Zhu, S., Zu, X.T., Xiang, X., Wang, Z.G., Wang, L.M., and Ewing, R.C., Nucl. Instr. and Meth. B, 206, 1092 (2003).Google Scholar
27. Wang, L.M., Wang, S.X., Zhu, S., and Ewing, R.C., J. Nucl. Mater. 289, 122 (2001).Google Scholar
28. Cattaruzza, E., Battaglin, G., Polloni, R., Cesca, T., Gonella, F., Mattei, G., Maurizio, C., Mazzoldi, P., D'Acapito, F., Zontone, F., and Bertoncello, R., Nucl. Instr. and Meth. B, 148, 1007 (1999).Google Scholar
29. Isobe, Tetsuhiko, Park, Seung Y., and Weeks, Robert A., J. Non-Cryst. Solids, 189, 173 (1995).Google Scholar
30. Xu, H.X. and Käll, M., Sensors and Actuators B, 87, 244 (2002).Google Scholar