Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:13:28.819Z Has data issue: false hasContentIssue false

Study of Natural Minerals of U-Ryrochlore-Type Structure as Analogues of Plutonium Ceramic Waste-form

Published online by Cambridge University Press:  21 March 2011

Roman V. Bogdanov
Affiliation:
Department of Chemistry, Saint-Petersburg State University, University Emb., 7/9, St. Petersburg, 199034, Russia; tel.: (7)-(812) 328-9446; fax: (7)-(812)-328-2835; e-mail:r.bogdanov@RB7584.spb.edu
Yuri F. Batrakov
Affiliation:
Department of Chemistry, Saint-Petersburg State University, University Emb., 7/9, St. Petersburg, 199034, Russia; tel.: (7)-(812) 328-9446; fax: (7)-(812)-328-2835; e-mail:r.bogdanov@RB7584.spb.edu
Elena V. Puchkova
Affiliation:
Department of Chemistry, Saint-Petersburg State University, University Emb., 7/9, St. Petersburg, 199034, Russia; tel.: (7)-(812) 328-9446; fax: (7)-(812)-328-2835; e-mail:r.bogdanov@RB7584.spb.edu
Andrey S. Sergeev
Affiliation:
Department of Geology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
Boris E. Burakov
Affiliation:
V.G. Khlopin Radium Institute, St. Petersburg, 194021, Russia
Get access

Abstract

At present, crystalline ceramic based on titanate pyrochlore, (Ca,Gd,Hf,Pu,U)2Ti2O7, is considered as the US candidate waste form for the immobilization of weapons grade plutonium. Naturally occuring U-bearing minerals with pyrochlore-type structure: hatchettolite, betafite, and ellsworthite, were studied in orders to understand long-term radiation damage effects in Pu ceramic waste forms. Chemical shifts (δ) of U(Lδ1)– and U(Lβ1) – X-ray emission lines were measured by X-ray spectrometry. Calculations were performed on the basis of a two-dimensional δLá1- and δLδ1- correlation diagram. It was shown that 100% of uranium in hatchettolite and, probably, 95-100% of uranium in betafite are in the form of (UO2)2+. formal calculation shows that in ellsworthite only 20% of uranium is in the form of U4+ and 80% of the rest is in the forms of U5+ and U6+. The conversion of the initial U4+ ion originally occurring in the pyrochlore structure of natural minerals to (UO2)2+ due to metamict decay causes a significant increase in uranium mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lumpkin, G. R., Foltyn, E. M., and Ewing, R. C.: J. Nucl. Mat., Vol. 139, 113120 (1986).Google Scholar
2. Lumpkin, G. R. and Ewing, R. C.: Proc. 45th Ann. Meet. Electron Microscopy Soc of America. Copyright 1987 by San Francisco Press, 376377.Google Scholar
3. Lumpkin, G. R. and Ewing, R. C.: Phys. Chem. Minerals, Vol. 16, 220 (1988).Google Scholar
4. Lumpkin, G. R. and Mariano, A. N.: Mat. Res. Soc. Symp. Proc. Vol. 42, 831838 (1996).Google Scholar
5. Lumpkin, G. R., Day, R. A., McGlinn, P. J., Payne, T. E., Giere, R., and Williams, C. T.: Mat. Res. Soc. Symp. Proc. Vol. 556, 793801 (1999).Google Scholar
6. Stefanovsky, S. V., Yudintsev, S. V., Nikonov, B. S., Omelianenko, B. I., Gorshkov, A. I.etal.: Mat. Res. Soc. Symp. Proc. Vol. 556, 2736 (1999).Google Scholar
7. Buck, E. C., Chamberlain, D. B., and Giere, R.: Mat. Res. Soc. Symp. Proc. Vol. 556, 19– (1999).Google Scholar
8. Xu, H., Wang, Y.: Mat. Res. Soc. Symp. Proc. Vol. 556, 149–56 (1999).Google Scholar
9. Raison, P. E., Haire, R. G., Sato, T., and Ogawa, T.: Mat. Res. Soc. Symp. Proc. Vol. 556, 310 (1999).Google Scholar
10. Icenhower, J. P., McGrail, B. P., Schaft, H. T., and Rodriguez, E. A.: Mat. Res. Soc. Symp. Proc. Vol. 608, 373378 (2000).Google Scholar
11. Giere, R., Swope, R. J., Buck, E. C., Guggenheim, R., Mathys, D., and Reusser, E.: Mat. Res.Soc. Symp. Proc. Vol. 608, 519524 (2000).Google Scholar
12. Sergeev, A. S.: Zapiski vsesojuznogo mineralogicheskogo obschestva, series 2, part 90, 400407 (1961) (in Russian).Google Scholar
13. Makarochkin, B. A., Frank-Kamenetskii, V. A., Kanibesova, G. A.: Geologia i Geophizika,No 9, 3251, 1963 (in Russian).Google Scholar
14. Kalita, A. P.: Redkozemelnye pegmatity Alakurtti i Priladozhja. Izd. AN SSSR, M., 1961, 119 p. (in Russian).Google Scholar
15. Tunis, A. V., Samsonov, V. M., and Sumbaev, O. I.: The crystall-diffraction spectrometerfor measurements of chemical shifts of L-series actinides X-ray lines (in Russian.):Preprint of the Leningrad Inst. of Nucl. Physics, No 151. Leningrad, 1975.Google Scholar
16. Bogdanov, R. V., YBatrakov, u. F., Puchkova, E. V., and Sergeev, A. S.: Radiochemistry, Vol. 41, No 5, 409433. (1999).Google Scholar
17. Batrakov, Yu. F., Bogdanov, R. V., Puchkova, E. V., and Sergeev, A. S.: Radiochemistry, Vol. 42, No 2, 112118 (2000).Google Scholar
18. Bogdanov, R. V., YBatrakov, u. F., Puchkova, E. V., and Sergeev, A. S.: Radiochemistry, Vol. 42, No 5, 496–405. (1999).Google Scholar
19. Kouzov, P. F.: Osnovy analiza dispersnogo sostava promyshlennyh pylei i izmelchenyh materialov. Izd. “Khimia”, Leningrad, 1974, 280 p. (in Russian).Google Scholar
20. andreev, S. E., Tovarov, V. V., Petrov, V. A.: Zakonomernosti izmelchenija i izchislenija kharakteristik granolometricheskogo sostava. GNTI, M., 1959, 438 p.(in Russian).Google Scholar
21. Radioactive Waste forms for the Future. Ed. by Lutze, W. and Ewing, R. C.. Elsevier Sci. Publ. B. V., North-Holand Physics, Amsterdam, 1988, 750 p.Google Scholar
22. Sidorenko, G. A., Gorobez, B. S., Dubinchuk, V. T.: Sovremennye metody mineralogiche-skogo analisa uranovyh rud. “Energoatomizdat”, Moscow, 1986, 184 p. (in Russian).Google Scholar