Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T19:50:11.656Z Has data issue: false hasContentIssue false

Study of Monocrystalline Structure of GaAs/Si Grown by VPE

Published online by Cambridge University Press:  22 February 2011

Zhang Rong
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R., China
Zheng Youdou
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R., China
Yan Yong
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R., China National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, P. R., China
Feng Duan
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R., China National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, P. R., China
Huang Shanxiang
Affiliation:
Nanjing Electronic Devices Research Institute, Nanjing 210000, P.R., China
Get access

Abstract

A single crystal GaAs/Si heterostructure has been fabricated using the “two step” version of the traditional halogenide VPE technique. The X-ray diffraction spectroscopy, the high resolution electron microscopy observation and the Raman scattering spectroscopy have been used to analyze the structure of the GaAs epitaxial film on Si, while the X-ray photoelectron energy spectroscopy has been used to determine the chemical structure of the GaAs epilayer. The results indicate that the epilayer is a stoichiometric GaAs single crystal film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Koch, S. M., Rosner, S. J., Hull, R., Yoffe, G. W. and Harris, J. S. Jr, J. Crystal Growth, 81, 205(1987)Google Scholar
[2] Georgalilas, A., Panayotatos, P., Stoemenos, J., Mourrain, J.-L. and Christou, A., J. Appl. Phys., 71, 2679(1992)Google Scholar
[3] Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Peng, C. K. and Morkoc, H., Appl. Phys. Lett., 49(5), 277(1986)Google Scholar
[4] Vdovin, V.I., Mil'vidskii, M.G. and Yugova, T.G., J. Cryst. Growth, 132, 477(1993)Google Scholar
[5] Neumann, D. A., Zhu, Xiaomei, Zabel, H., Henderson, T., Fischer, R., Masselink, W. T., Klem, J., Peng, C. K. and Morkoc, H., J. Vac. Sci. Technol., B4(2), 642(1986)Google Scholar
[6] Hull, R., Rosner, S. J., Koch, S. M. and Harris, J. S. Jr, Appl. Phys. Lett., 49(25), 1714(1986)Google Scholar
[7] Morkoc, H., Unlu, H., Zabel, H. and Otsuka, N., Solid State Technology, 71, March 1988 Google Scholar
[8] Wilson, B. A., Bonner, Carl E., Miller, R. C., Sputz, S. K., Harris, T. D., Lamont, M. G., Dupuis, R. D., Vernon, S. M., Haven, V. E., Lum, R. M. and Klingert, J. K., J. Electronic Materials, 17(2), 115(1987)Google Scholar
[9] Fischer, R., Chand, N., Kopp, W., Morkoc, H., Erickson, L. P. and Youngman, R., Appl. Phys. Lett., 47(4), 397(1985)Google Scholar
[10] Zheng, Y. D., Zhang, R., Tang, J., Yuan, R. K., Shen, X. C., Yan, Y., Feng, D. and Huang, S. X., 19th International Conference on the Physics of Semiconductors, Warsaw, 1988 Google Scholar
[11] Huang, S.X., Lin, J.T., Lu, Z., Shen, H.Y., Wang, C.L., Zheng, Y. D., Zhang, R., Yan, Y. and Feng, D., Research and Progress of Solid State Electronics, 11(4), 324(1991) (in Chinese)Google Scholar
[12] Yan, Yong, Feng, Duan, Zheng, Youdou, Zhang, Rong, Huang, Shanxiang, Materials Letters, Vol.7, No.1, 32(1988)Google Scholar