Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T02:07:55.445Z Has data issue: false hasContentIssue false

Study of Linear and Nonlinear Microscopic Polarizabilities of C60

Published online by Cambridge University Press:  25 February 2011

Erik Westin
Affiliation:
Department of Physics, Chalmers University of Technology and University of Göteborg, S–412 96 Göteborg, Sweden
Arne RosÉn
Affiliation:
Department of Physics, Chalmers University of Technology and University of Göteborg, S–412 96 Göteborg, Sweden
Get access

Abstract

The low energy part of the linear optical response spectrum and lowest order hyperpolarizability γ(3) of C60 are calculated by a sum over state approach using single particle wavefunctions and. energy levels determined from local density calculations. Lorentz local field factors, as well as a RPA correction are introducedto facilitate comparison with the dielectric function ε(ω) determined fromfilms of C60. γ( 2 ) for a centrosymmetric molecule such asC60 is zero and the lowest non-zero contribution to the polarizability is γ( 3 ). Reasonable agreement is found with linear optical response experiments if a RPA screening is used. However, SHG and THG experiments on C60 in solid or solution form, yields values closer to the unscreened results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Kratschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R.,Nature 347 (1990) 354358.CrossRefGoogle Scholar
[2] Aije, H., Alvarez, M.M., Anz, S.J., Beck, R.D., Diedrich, F., Fostiropoulos, K., Huffman, D.R., Kratschmer, W., Rubin, Y., Schriver, K.E., Sensharma, D. and Whetten, R.L., J. Phys.Chem. 94, (1990) 8630 Google Scholar
[3] Hare, J.P., Kroto, H.W. and Taylor, R., Chem.Phys.Lett. 177,394 (1990)CrossRefGoogle Scholar
[4] Leach, S., Vervloet, M., Despres, A., Breheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R. and Walton, D.R.M., Chem.Phys. 160 (1992) 451466 Google Scholar
[5] Sohmen, E., Fink, J., Kratschmer, W., Z.Phys.B. 86 (1992) 8792 and references thereinGoogle Scholar
[6] Ren, S.L., Wang, Y., Rao, A.M., McRae, E., Holden, J.M., Hager, T., Wang, KaiAn, Lee, Wen-Tse, Ni, H.F., Selegue, J., andEklund, P.C., Appl. Phys. Lett. 59 (1992) 26782680 CrossRefGoogle Scholar
[7] Wang, Ying, Cheng, Lap-Tak, J.Phys.Chem. 96, 1530 (1992)Google Scholar
[8] Kafafi, Z.H., Lindle, J.R., Pong, R.G.S., Bartoli, F.J., Lingg, L.J., Milliken, J., Chem.Phys.Lett. 188, 492 (1992)CrossRefGoogle Scholar
[9] Blau, W.J., Byrne, H.J., Cardin, D.J., Dennis, T.J., Hare, J.P., Kroto, H.W., Taylor, R., Walton, D.R.M., Phys.Rev.Lett. 67, 1423 (1991)Google Scholar
[10] Hoshi, H., Nakamura, N., Maruyama, Y., Nakagava, T., Suzuki, S., Shiromaru, H., Achiba, Y., Japan J. Appl. Phys. 30, L1397 (1991)Google Scholar
[11] Rosker, M.J., Marcy, H.O., Chang, Tallis Y., Khoury, J., Hansen, K., Whetten, R.L., private communicationGoogle Scholar
[12] Wang, X.K., Zhang, T.G., Lin, W.P., Liu, Sheng Zhong, Wong, G.K., Kappes, M.M., Chang, R.P.H., Ketterson, J.B., Appl. Phys. Lett. 60, 7, (1992) 810812 Google Scholar
[13] Fullerenes, Synthesis, Properties and Chemistry of Large Carbon Clusters, Eds,Hammond, G.S. and Kuck, V.J., ACS Symposium 481, 1992 Google Scholar
[14] Kroto, H., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., Nature 318 162163 (1985)Google Scholar
[15] Larsson, S., Volosov, A., and Rosén, A., Chem. Phys.Lett. 137,6(1987), 501504 Google Scholar
[16] Braga, M., Rosén, A., andLarsson, S., Z.Phys.D. 19, (1991) 435438 CrossRefGoogle Scholar
[17] Heath, J.R., Curl, R.F. and Smalley, R.E., J.Chem.Phys. 87 (1987)4236 Google Scholar
[18] Haddon, R.C., Brus, L.E., andRaghavachari, K., Chem.Phys.Lett. 125, 56, (1986)Google Scholar
[19] Rosén, A., Wastberg, B., J.Chem.Phys. 90, 25252526 (1989)CrossRefGoogle Scholar
[20] Wastberg, B., Rosén, A., Physica Scripta 44 (1991) 276288 CrossRefGoogle Scholar
[21] Hohenberg, P., Phys. Rev. 136 (1964) B864–B871; W. Kohn and L.J. Sham, Phys. Rev. 140 (1965) A1133 A1138.Google Scholar
[22] Barth, U. von and Hedin, L., J. Phys. CS (1972) 1629.Google Scholar
[23] Butcher, P.N., Cotter, D., The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1990)CrossRefGoogle Scholar
[24] Boyd, R.W., Nonlinear Optics, Academic Press, Boston, 1992 Google Scholar
[25] Bertsch, G.F., Bulgac, A., Tomanek, D., and Wang, Yang, Phys.Rev.Lett. 67, 19 (1991)Google Scholar
[26] Fowler, P.W., Lazzaretti, P., andZanasi, R., Chem. Phys.Lett. 165, 7986 (1990)Google Scholar