Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T20:40:38.553Z Has data issue: false hasContentIssue false

Study of Ge Out-diffusion During Nickel (Platinum ∼ 0, 5, 10 at.%) Germanosilicide Formation

Published online by Cambridge University Press:  17 March 2011

L. J. Jin
Affiliation:
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576
K. L. Pey
Affiliation:
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576 School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798
W. K. Choi
Affiliation:
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576 Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576
E. A. Fitzgerald
Affiliation:
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139- 66307
D. A. Antoniadis
Affiliation:
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore, 117576 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139- 66307
A. J. Pitera
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139- 66307
M. L. Lee
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139- 66307
D. Z. Chi
Affiliation:
Institute of Materials Science and Engineering, 3 Research Link, Singapore, 117602
Get access

Abstract

The interfacial reaction between 10 nm Ni(Pt ∼0, 5, 10 at.%) and (100) Si0.75Ge0.25 substrate after rapid thermal annealing between 400 and 800°C has been studied in detail using Micro- Raman spectroscopy. Only monogermanosilicide phase was detected in the temperature range investigated. The evolution of a broad Ni(Pt)SiGe Raman peak into two distinct peaks with increasing annealing temperature is attributed to a Ge out-diffusion from the germanosilicide grains. In addition, Raman spectroscopy further proves that depletion of Ge concentration in the Ni(Pt)SiGe grains reduces at higher temperature by the addition of Pt. The above phenomena were further supported by X-ray diffraction method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luo, J.-Shing, Lin, W.-Tai, Yang, C. Y., and Tsai, W. C., J. Appl. Phys. 82, 3621 (1997).Google Scholar
2. Tung, R. T., Levi, A. F. J., and Gibson, J. M., J. Vac. Sci. Technol. B 4, 1435 (1986).Google Scholar
3. d'Heurle, F. M., J. Vac. Sci. Technol. A 7, 1467 (1989).Google Scholar
4. Ohguro, T., Nakamura, S., Saito, M., Ono, M., Harakawa, H., Morifuji, E., Yoshitomi, T., Morimoto, T., Momose, H. S., Katsumata, Y., and Iwai, H., Proc. ESC Symp. ULSI Sci. Technol. PV-97-3, 275 (1997).Google Scholar
5. Deboer, F. R., Boom, R., Mattens, W. C., Miedema, A. R., and Niessen, A. K., Cohesion in Metals: Transition Metal Alloys. (North-Holland, Amsterdam, 1998) p. 311.Google Scholar
6. Pey, K. L., Chattopadhyay, S., Choi, W. K., Miron, Y., Fitzgerald, E. A., Antoniadis, D. A. and Osipowicz, T., J. Vac. Sci. Technol. B 22(2), 852 (2004).Google Scholar
7. Lee, P. S., Mangelinck, D., Pey, K. L., Chen, Z. X., Ding, J., Osipowicz, T., and See, A., Electrochem. Solid-State Lett. 3, 153 (2000).Google Scholar
8. Codella, P. J., Adar, F., and Liu, Y. S., Appl. Phys. Lett. 46, 1076 (1985).Google Scholar
9. Fitzgerald, E. A. and Samavedam, S. B., Thin Solid Films 294, 3 (1997).Google Scholar
10. Tan, C. S., Choi, W. K., Bera, L. K., Pey, K. L., Antoniadis, D. A., Fitzgerald, E. A., Currie, M. T. and Maiti, C. K., Solid-State Electron. 45, 1945 (2001).Google Scholar
11. Standard JCPDS diffraction pattern-77-2111 and 04-0545, 1998 JCPDS-international Centre for Diffraction Data, PCPDFWIN, v.2.01.Google Scholar
12. Standard JCPDS diffraction pattern-38-844, 7-297, 83-152, JCPDS-international Centre for Diffraction Data, PDF-2 Database.Google Scholar
13. Zhang, S.-L., Microelectronic Engineering 70, 174 (2003).Google Scholar
14. Pey, K. L., Choi, W. K., Chattopadhyay, S., Zhao, H. B., and Lee, P. S., J. Vac. Sci. Technol. A 20, 1903 (2002).Google Scholar