Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T02:21:32.858Z Has data issue: false hasContentIssue false

A Study of Defects in Czochralski-Grown Silicon by Positron Annihilation Spectroscopy

Published online by Cambridge University Press:  03 September 2012

S. C. Sharma*
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
N. Hozhabri
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
R. G. Hyer
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
T. Hossain
Affiliation:
Texas Instruments, Dallas, Texas 75265
S. Kim
Affiliation:
Texas Instruments, Dallas, Texas 75265
F. O. Meyer III
Affiliation:
Texas Instruments, Dallas, Texas 75265
M. F. Pas
Affiliation:
Texas Instruments, Dallas, Texas 75265
A. E. Stephens
Affiliation:
Texas Instruments, Dallas, Texas 75265
*
* To whom correspondence should be addressed
Get access

Abstract

We have studied defects in Cz-grown single crystal silicon by utilizing a variable energy positron beam and positron lifetime spectroscopy in conjunction with surface photovoltage measurements. We present results for the depth profile of defects obtained from the Doppler broadening spectra measured by implanting variable energy positrons at different depths ranging from the surface down to ∼ 1 /xm deep. We have also measured positron lifetime spectra at different locations on a wafer and have obtained a radial variation in the density of the vacancy-type defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dannefaer, S., J. Phys. C, 15, 599 (1982).Google Scholar
2. Hautojarvi, P., Huttuen, P., Makinen, J., Punkka, E., and Vehanen, A., Met. Res. Soc. Symp. Proc. 104, 105 (1988).Google Scholar
3. Nielsen, B., Lynn, K. G., Leung, T. C., Cordts, B. F., and Seraphin, S., Phys. Rev. B44, 1812 (1991).Google Scholar
4. Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys. 60, 701 (1988).Google Scholar
5. Hozhabri, N., Hyer, R. C., Sharma, S. C, Ma, J. Y., Pathak, R. N., and Alavi, K., J. Vac. Sci. Tech. B10, 788 (1992).CrossRefGoogle Scholar
6. Hozhabri, N., Sharma, S. C, Alavi, K., Pathak, R. N., and ma, J. Y., Seventh International Conference on Molecular Beam Epitaxy, (1992).Google Scholar
7. Kirkegaard, P., Eldrup, M., Mogensen, O. E., and Pedersen, N. J., Comp. Phys. Commun. 23, 307 (1981).Google Scholar
8. van Veen, A., Schut, H., de Vries, J., Hakvoort, R. A., and Ijpma, M. R., in Positron Beams for Solids and Surfaces, eds. Schultz, P. J., Massoumi, G. R., and Simpson, P. J., AIP Conf. Proc. 218, 171 (1990).Google Scholar
9. Puska, M. J. and Corbel, C., Phys. Rev. B38, 9874 (1988).Google Scholar